[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.

Short Answer

Expert verified

a. \(C = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&5&{ - 3}\\{ - 4}&6&{ - 2}&{ - 5}\\5&{ - 7}&5&2\\{ - 3}&5&{ - 1}&{ - 4}\\6&{ - 8}&4&9\end{array}} \right]\) , \(R = \left[ {\begin{array}{*{20}{c}}1&0&{\frac{{13}}{2}}&0&5&0&{ - 3}\\0&1&{\frac{{11}}{2}}&0&{\frac{1}{2}}&0&2\\0&0&0&1&{\frac{{ - 11}}{2}}&0&7\\0&0&0&0&0&1&1\end{array}} \right]\), and \(N = \left[ {\begin{array}{*{20}{c}}{ - \frac{{13}}{2}}&{ - 5}&3\\{ - \frac{{11}}{2}}&{ - \frac{1}{2}}&{ - 2}\\1&0&0\\0&{\frac{{11}}{2}}&{ - 7}\\0&1&0\\0&0&{ - 1}\\0&0&1\end{array}} \right]\).

b. It is verified that \(S\) and \(T\) are invertible.

Step by step solution

01

Convert the matrix into the row-reduced echelon form

a)

Use code in the MATLAB to obtain the row-reduced echelon form of the matrix.

\[\begin{array}{l} > > {\mathop{\rm A}\nolimits} = \left[ {7\,\,\, - 9\,\,\,\, - 4\,\,\,\,5\,\,\,\,3\,\,\,\, - 3\,\,\, - 7;\, - 4\,\,\,\,6\,\,\,\,7\,\,\, - 2\,\,\,\, - 6\,\,\,\, - 5\,\,\,5;\,\,5\,\, - 7\,\,\, - 6\,\,\,\,5\,\,\, - 6\,\,\,2\,\,\,8;\, - 3\,\,\,\,5\,\,\,8\,\,\, - 1\,\,\,\, - 7\,\,\,\, - 4\,\,\,\,8;\,\,6\,\,\, - 8\,\,\,\, - 5\,\,\,\,4\,\,\,\,4\,\,\,\,9\,\,\,3} \right]\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm rref}\nolimits} \left( {\mathop{\rm A}\nolimits} \right)\end{array}\]

\(A \sim \left[ {\begin{array}{*{20}{c}}1&0&{\frac{{13}}{2}}&0&5&0&{ - 3}\\0&1&{\frac{{11}}{2}}&0&{\frac{1}{2}}&0&2\\0&0&0&1&{\frac{{ - 11}}{2}}&0&7\\0&0&0&0&0&1&1\\0&0&0&0&0&0&0\end{array}} \right]\)

02

Construct matrix \(C\) whose columns are the bases for Col\(A\)

The pivot columns of matrix \(A\) are a basis for \({\mathop{\rm Col}\nolimits} A\). Thus, matrix \(C\) has the following columns:

\(C = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&5&{ - 3}\\{ - 4}&6&{ - 2}&{ - 5}\\5&{ - 7}&5&2\\{ - 3}&5&{ - 1}&{ - 4}\\6&{ - 8}&4&9\end{array}} \right]\)

03

Construct matrix \(R\) whose rows form a basis for row \(A\)

The pivot rows of the row-reduced echelon form of matrix \(A\) form a basis for row A. Therefore, matrix \(R\) has the following:

\(R = \left[ {\begin{array}{*{20}{c}}1&0&{\frac{{13}}{2}}&0&5&0&{ - 3}\\0&1&{\frac{{11}}{2}}&0&{\frac{1}{2}}&0&2\\0&0&0&1&{\frac{{ - 11}}{2}}&0&7\\0&0&0&0&0&1&1\end{array}} \right]\)

04

Construct matrix \(N\) whose columns are the bases for Nul\(A\)

To determine the basis for \({\mathop{\rm Nul}\nolimits} A\), row reduce matrix A to the reduced echelon form. The solution to the equation \(A{\mathop{\rm x}\nolimits} = 0\) can be expressed in terms of the free variables as: \(\begin{array}{l}{{\mathop{\rm x}\nolimits} _1} = - \left( {\frac{{13}}{2}} \right){{\mathop{\rm x}\nolimits} _3} - 5{{\mathop{\rm x}\nolimits} _5} + 3{{\mathop{\rm x}\nolimits} _7}\\{{\mathop{\rm x}\nolimits} _2} = - \left( {\frac{{11}}{2}} \right){{\mathop{\rm x}\nolimits} _3} - \left( {\frac{1}{2}} \right){{\mathop{\rm x}\nolimits} _5} - 2{{\mathop{\rm x}\nolimits} _7}\\{{\mathop{\rm x}\nolimits} _4} = - \left( {\frac{{11}}{2}} \right){{\mathop{\rm x}\nolimits} _5} - 7{{\mathop{\rm x}\nolimits} _7}\\{{\mathop{\rm x}\nolimits} _6} = - {{\mathop{\rm x}\nolimits} _7}\end{array}\)

\({{\mathop{\rm x}\nolimits} _3}\), \({{\mathop{\rm x}\nolimits} _5},\) and \({{\mathop{\rm x}\nolimits} _7}\) are the free variables.

Therefore, matrix \(N\) is obtained as shown below:

\(N = \left[ {\begin{array}{*{20}{c}}{ - \frac{{13}}{2}}&{ - 5}&3\\{ - \frac{{11}}{2}}&{ - \frac{1}{2}}&{ - 2}\\1&0&0\\0&{\frac{{11}}{2}}&{ - 7}\\0&1&0\\0&0&{ - 1}\\0&0&1\end{array}} \right]\)

05

Construct matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\)

b)

Matrix \({A^T}\)is obtainedas shown below:

\({A^T} = \left[ {\begin{array}{*{20}{c}}7&{ - 4}&5&{ - 3}&6\\{ - 9}&6&{ - 7}&5&{ - 8}\\{ - 4}&7&{ - 6}&8&{ - 5}\\5&{ - 2}&5&{ - 1}&4\\3&{ - 6}&{ - 6}&{ - 7}&4\\{ - 3}&{ - 5}&2&{ - 4}&9\\{ - 7}&5&8&8&3\end{array}} \right]\)

Consider matrix \({{\mathop{\rm A}\nolimits} ^T} = \left[ {\begin{array}{*{20}{c}}7&{ - 4}&5&{ - 3}&6\\{ - 9}&6&{ - 7}&5&{ - 8}\\{ - 4}&7&{ - 6}&8&{ - 5}\\5&{ - 2}&5&{ - 1}&4\\3&{ - 6}&{ - 6}&{ - 7}&4\\{ - 3}&{ - 5}&2&{ - 4}&9\\{ - 7}&5&8&8&3\end{array}} \right]\).

Use the code in the MATLAB to obtain the row-reduced echelon form of the matrix as shown below:

\[\begin{array}{l} > > {{\mathop{\rm A}\nolimits} ^T} = \left[ {7\,\,\, - 4\,\,\,\,5\,\,\, - 3\,\,\,6;\,\, - 9\,\,\,6\,\,\, - 7\,\,\,5\,\,\, - 8;\, - 4\,\,\,7\,\,\, - 6\,\,\,8\,\,\, - 5;\,5\,\,\, - 2\,\,\,\,5\,\,\, - 1\,\,\,4;\,3\,\,\, - 6\,\,\, - 6\,\,\, - 7\,\,\,4;\, - 3\,\,\, - 5\,\,\,2\,\,\, - 4\,\,\,9;\,\, - 7\,\,\,5\,\,\,8\,\,\,8\,\,\,3} \right]\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm rref}\nolimits} \left( {{{\mathop{\rm A}\nolimits} ^T}} \right)\end{array}\]

\({{\mathop{\rm A}\nolimits} ^T} \sim \left[ {\begin{array}{*{20}{c}}1&0&0&0&{\frac{{ - 2}}{{11}}}\\0&1&0&0&{\frac{{ - 41}}{{11}}}\\0&0&1&0&0\\0&0&0&1&{\frac{{28}}{{11}}}\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right]\)

Thus, the solution to the equation \({A^T}{\mathop{\rm x}\nolimits} = 0\) can be expressed in terms of the free variables as shown below:

\(\begin{array}{l}{{\mathop{\rm x}\nolimits} _1} = \left( {\frac{2}{{11}}} \right){{\mathop{\rm x}\nolimits} _5}\\{{\mathop{\rm x}\nolimits} _2} = \left( {\frac{{41}}{{11}}} \right){{\mathop{\rm x}\nolimits} _5}\\{{\mathop{\rm x}\nolimits} _3} = 0\\{{\mathop{\rm x}\nolimits} _4} = - \left( {\frac{{28}}{{11}}} \right){{\mathop{\rm x}\nolimits} _5}\end{array}\)

\({{\mathop{\rm x}\nolimits} _5}\)is a free variable.

Therefore, matrix \(M\) is obtained as shown below:

\(M = \left[ {\begin{array}{*{20}{c}}{\frac{2}{{11}}}\\{\frac{{41}}{{11}}}\\0\\{ - \frac{{28}}{{11}}}\\1\end{array}} \right]\)

06

Verify that both \(S\) and \(T\) are invertible

Matrix \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) is a \(7 \times 7\) matrix since the columns of \({R^T}\) and \(N\) are in \({\mathbb{R}^7}\) and \(\dim {\mathop{\rm Row}\nolimits} A + \dim {\mathop{\rm Nul}\nolimits} A = 7\). Matrix \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\) is \(5 \times 5\) since the columns of \(C\) and \(M\) are in \({\mathbb{R}^5}\) and \(\dim {\mathop{\rm Col}\nolimits} A + \dim {\mathop{\rm Nul}\nolimits} {A^T} = 5\). Both \(S\) and \(T\) are invertible since their columns are linearly independent.

Thus, it is verified that \(S\) and \(T\) are invertible.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A scientist solves a nonhomogeneous system of ten linear equations in twelve unknowns and finds that three of the unknowns are free variables. Can the scientist be certain that, if the right sides of the equations are changed, the new nonhomogeneous system will have a solution? Discuss.

Let \(B = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{9}}\end{array}} \right)\,} \right\}\). Since the coordinate mapping determined by B is a linear transformation from \({\mathbb{R}^{\bf{2}}}\) into \({\mathbb{R}^{\bf{2}}}\), this mapping must be implemented by some \({\bf{2}} \times {\bf{2}}\) matrix A. Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)).

If A is a \({\bf{6}} \times {\bf{8}}\) matrix, what is the smallest possible dimension of Null A?

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that the coordinate mapping is onto \({\mathbb{R}^n}\). That is, given any y in \({\mathbb{R}^n}\), with entries \({y_{\bf{1}}}\),….,\({y_n}\), produce u in V such that \({\left( {\bf{u}} \right)_B} = y\).

Question 11: Let\(S\)be a finite minimal spanning set of a vector space\(V\). That is,\(S\)has the property that if a vector is removed from\(S\), then the new set will no longer span\(V\). Prove that\(S\)must be a basis for\(V\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free