(M) Let \(H = {\bf{Span}}\left\{ {{{\bf{v}}_{\bf{1}}},\;{{\bf{v}}_{\bf{2}}}} \right\}\) and \(B = \left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\). Show that x is in the H and find the B coordinate vector of x, for

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{{\bf{11}}}\\{ - {\bf{5}}}\\{{\bf{10}}}\\{\bf{7}}\end{array}} \right)\), \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{{\bf{14}}}\\{ - {\bf{8}}}\\{{\bf{13}}}\\{{\bf{10}}}\end{array}} \right)\), \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{{\bf{19}}}\\{ - {\bf{13}}}\\{{\bf{18}}}\\{{\bf{15}}}\end{array}} \right)\)

Short Answer

Expert verified

\({\left( {\bf{x}} \right)_B} = \left( {\begin{array}{*{20}{c}}{ - \frac{5}{3}}\\{\frac{8}{3}}\end{array}} \right)\)

Step by step solution

01

Write the augmented matrix \(\left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{\bf{x}}\end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{\bf{x}}\end{array}} \right)\)

The augmented matrixcan be written as:

\(\left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{\bf{x}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{11}&{14}&{19}\\{ - 5}&{ - 8}&{ - 13}\\{10}&{13}&{18}\\7&{10}&{15}\end{array}} \right)\)

02

Write the augmented matrix in the echelon form

Consider matrix \(A = \left( {\begin{array}{*{20}{c}}{11}&{14}&{19}\\{ - 5}&{ - 8}&{ - 13}\\{10}&{13}&{18}\\7&{10}&{15}\end{array}} \right)\).

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left( {{\rm{ }}\begin{array}{*{20}{c}}{11}&{14}&{19;\;\;\begin{array}{*{20}{c}}{ - 5}&{ - 8}&{ - 13;\;\;\begin{array}{*{20}{c}}{10}&{13}&{18;\;\;\begin{array}{*{20}{c}}7&{10}&{15}\end{array}}\end{array}}\end{array}}\end{array}} \right);\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left( {\begin{array}{*{20}{c}}{11}&{14}&{19}\\{ - 5}&{ - 8}&{ - 13}\\{10}&{13}&{18}\\7&{10}&{15}\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&{ - \frac{5}{3}}\\0&1&{\frac{8}{3}}\\0&0&0\\0&0&0\end{array}} \right)\)

03

Write the system of equations for x

For\({\bf{x}}\), using the augmented matrix, you get:

\({\bf{x}} = {c_1}{{\bf{x}}_1} + {c_2}{{\bf{x}}_2}\)

So, the values of\({c_1}\)and\({c_2}\)are:

\({c_1} = - \frac{5}{3}\)and\({c_2} = \frac{8}{3}\)

Therefore, the B-coordinate for vector \({\bf{x}}\) is \({\left( {\bf{x}} \right)_B} = \left( {\begin{array}{*{20}{c}}{ - \frac{5}{3}}\\{\frac{8}{3}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show the coordinate mapping is one to one. (Hint: Suppose \({\left( {\bf{u}} \right)_B} = {\left( {\bf{w}} \right)_B}\) for some u and w in V, and show that \({\bf{u}} = {\bf{w}}\)).

Let S be a maximal linearly independent subset of a vector space V. In other words, S has the property that if a vector not in S is adjoined to S, the new set will no longer be linearly independent. Prove that S must be a basis of V. [Hint: What if S were linearly independent but not a basis of V?]

Consider the polynomials , and \({p_{\bf{3}}}\left( t \right) = {\bf{2}}\) \({p_{\bf{1}}}\left( t \right) = {\bf{1}} + t,{p_{\bf{2}}}\left( t \right) = {\bf{1}} - t\)(for all t). By inspection, write a linear dependence relation among \({p_{\bf{1}}},{p_{\bf{2}}},\) and \({p_{\bf{3}}}\). Then find a basis for Span\(\left\{ {{p_{\bf{1}}},{p_{\bf{2}}},{p_{\bf{3}}}} \right\}\).

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

19. \(A = \left( {\begin{array}{*{20}{c}}{.9}&1&0\\0&{ - .9}&0\\0&0&{.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free