Exercises 37 and 38 concern the crystal lattice for titanium, which has the hexagonal structure shown on the left in the accompanying

figure. The vectors\(\left( {\begin{array}{*{20}{c}}{2.6}\\{ - 1.5}\\0\end{array}} \right)\),\(\left( {\begin{array}{*{20}{c}}0\\3\\0\end{array}} \right)\),\(\left( {\begin{array}{*{20}{c}}0\\0\\{4.8}\end{array}} \right)\)in\({\mathbb{R}^{\bf{3}}}\)form a basis for the unit cell shown on the right. The numbers here are Angstrom units\(\left( {1\mathop { A}\limits^{{\rm{ o}}} = 1{0^{ - 8}}cm} \right)\). In alloys of titanium, some additional atoms may be in the unit cell at the octahedral and tetrahedralsites (so named because of the geometric objects

formed by atoms at these locations).


The hexagonal close-packed lattice and its unit cell.

37. One of the octahedral sites is\(\left( {\begin{array}{*{20}{c}}{1/2}\\{1/4}\\{1/6}\end{array}} \right)\), relative to the lattice basis. Determine the coordinates of this site relative to the standard basis of\({\mathbb{R}^{\bf{3}}}\).

Short Answer

Expert verified

The coordinates of this site relative to the standard basis of \({\mathbb{R}^{\bf{3}}}\) is \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{1.3}\\0\\{0.8}\end{array}} \right)\).

Step by step solution

01

State the coordinates of x relative to the standard basis

It is given that for the unit cell, thebasis is\(B = \left\{ {\left( {\begin{array}{*{20}{c}}{2.6}\\{ - 1.5}\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\3\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\0\\{4.8}\end{array}} \right)} \right\}\).

Obtain thecoordinatesof the octahedral site \({\left( {\bf{x}} \right)_B} = \left( {\begin{array}{*{20}{c}}{1/2}\\{1/4}\\{1/6}\end{array}} \right)\) relative to the standard basis of\({\mathbb{R}^{\bf{3}}}\), as shown below:

Write the basis B in the matrix form as shown below:

\({P_B} = \left( {\begin{array}{*{20}{c}}{2.6}&0&0\\{ - 1.5}&3&0\\0&0&{4.8}\end{array}} \right)\)

02

State the coordinates of x relative to the standard basis

Compute the product of matrices\({\left( {\bf{x}} \right)_B} = \left( {\begin{array}{*{20}{c}}{1/2}\\{1/4}\\{1/6}\end{array}} \right)\)and\({P_B} = \left( {\begin{array}{*{20}{c}}{2.6}&0&0\\{ - 1.5}&3&0\\0&0&{4.8}\end{array}} \right)\)using the MATLAB command shown below:

\(\begin{array}{l} > > {\rm{A}} = \left( {{\rm{2}}{\rm{.6 0 0; }} - {\rm{1}}{\rm{.5 3 0; 0 0 4}}{\rm{.8}}} \right);\\ > > {\rm{B}} = \left( {{\rm{1/2 1/4 1/6}}} \right);\\ > > {\rm{M}} = {\rm{A}}*{\rm{B}}\end{array}\)

So, the output is

\(\begin{array}{c}{\bf{x}} = {P_B}{\left( {\bf{x}} \right)_B}\\ = \left( {\begin{array}{*{20}{c}}{2.6}&0&0\\{ - 1.5}&3&0\\0&0&{4.8}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{1/2}\\{1/4}\\{1/6}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{1.3}\\0\\{0.8}\end{array}} \right).\end{array}\)

Thus, the coordinates of this site relative to the standard basis of \({\mathbb{R}^{\bf{3}}}\) is \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{1.3}\\0\\{0.8}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).

  1. Show that \(T\) is a linear transformation. (Hint: For arbitrary polynomials p, q in \({{\mathop{\rm P}\nolimits} _2}\), compute \(T\left( {{\mathop{\rm p}\nolimits} + {\mathop{\rm q}\nolimits} } \right)\) and \(T\left( {c{\mathop{\rm p}\nolimits} } \right)\).)
  2. Find a polynomial p in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\), and describe the range of \(T\).

Suppose \(A\) is \(m \times n\)and \(b\) is in \({\mathbb{R}^m}\). What has to be true about the two numbers rank \(\left[ {A\,\,\,{\rm{b}}} \right]\) and \({\rm{rank}}\,A\) in order for the equation \(Ax = b\) to be consistent?

If A is a \({\bf{6}} \times {\bf{8}}\) matrix, what is the smallest possible dimension of Null A?

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix\(A\)is\(m \times n\).

15. Let\(A\)be an\(m \times n\)matrix, and let\(B\)be a\(n \times p\)matrix such that\(AB = 0\). Show that\({\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B \le n\). (Hint: One of the four subspaces\({\mathop{\rm Nul}\nolimits} A\),\({\mathop{\rm Col}\nolimits} A,\,{\mathop{\rm Nul}\nolimits} B\), and\({\mathop{\rm Col}\nolimits} B\)is contained in one of the other three subspaces.)

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that a subset \(\left\{ {{{\bf{u}}_1},...,{{\bf{u}}_p}} \right\}\) in V is linearly independent if and only if the set of coordinate vectors \(\left\{ {{{\left( {{{\bf{u}}_{\bf{1}}}} \right)}_B},.....,{{\left( {{{\bf{u}}_p}} \right)}_B}} \right\}\) is linearly independent in \({\mathbb{R}^n}\)(Hint: Since the coordinate mapping is one-to-one, the following equations have the same solutions, \({c_{\bf{1}}}\),….,\({c_p}\))

\({c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p} = {\bf{0}}\) The zero vector V

\({\left( {{c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p}} \right)_B} = {\left( {\bf{0}} \right)_B}\) The zero vector in \({\mathbb{R}^n}\)a

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free