(M) Show thatis a linearly independent set of functions defined on. Use the method of Exercise 37. (This result will be needed in Exercise 34 in Section 4.5.)

Short Answer

Expert verified

By the invertible matrix theorem, is a linearly independent set of functions defined on .

Step by step solution

01

Use the method used in Exercise 37

Assume \({c_1} \cdot 1 + {c_2} \cdot \cos t + {c_3} \cdot {\cos ^2}t + ... + {c_7} \cdot {\cos ^6}t = 0\).

For \(t = 0,.1,.2,...,.6\), the above equation gives the system as shown below:

\(\left( {\begin{array}{*{20}{c}}1&{\cos 0}&{{{\cos }^2}0}&{{{\cos }^3}0}&{{{\cos }^4}0}&{{{\cos }^5}0}&{{{\cos }^6}0}\\1&{\cos .1}&{{{\cos }^2}.1}&{{{\cos }^3}.1}&{{{\cos }^4}.1}&{{{\cos }^5}.1}&{{{\cos }^6}.1}\\1&{\cos .2}&{{{\cos }^2}.2}&{{{\cos }^3}.2}&{{{\cos }^4}.2}&{{{\cos }^5}.2}&{{{\cos }^6}.2}\\1&{\cos .3}&{{{\cos }^2}.3}&{{{\cos }^3}.3}&{{{\cos }^4}.3}&{{{\cos }^5}.3}&{{{\cos }^6}.3}\\1&{\cos .4}&{{{\cos }^2}.4}&{{{\cos }^3}.4}&{{{\cos }^4}.4}&{{{\cos }^5}.4}&{{{\cos }^6}.4}\\1&{\cos .5}&{{{\cos }^2}.5}&{{{\cos }^3}.5}&{{{\cos }^4}.5}&{{{\cos }^5}.5}&{{{\cos }^6}.5}\\1&{\cos .6}&{{{\cos }^2}.6}&{{{\cos }^3}.6}&{{{\cos }^4}.6}&{{{\cos }^5}.6}&{{{\cos }^6}.6}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\\{{c_3}}\\{{c_4}}\\{{c_5}}\\{{c_6}}\\{{c_7}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\\0\\0\\0\end{array}} \right)\)

That is, \(Ac = 0\).

02

Find the determinant of A

\(\begin{array}{c}\det A = \left| {\begin{array}{*{20}{c}}1&{\cos 0}&{{{\cos }^2}0}&{{{\cos }^3}0}&{{{\cos }^4}0}&{{{\cos }^5}0}&{{{\cos }^6}0}\\1&{\cos .1}&{{{\cos }^2}.1}&{{{\cos }^3}.1}&{{{\cos }^4}.1}&{{{\cos }^5}.1}&{{{\cos }^6}.1}\\1&{\cos .2}&{{{\cos }^2}.2}&{{{\cos }^3}.2}&{{{\cos }^4}.2}&{{{\cos }^5}.2}&{{{\cos }^6}.2}\\1&{\cos .3}&{{{\cos }^2}.3}&{{{\cos }^3}.3}&{{{\cos }^4}.3}&{{{\cos }^5}.3}&{{{\cos }^6}.3}\\1&{\cos .4}&{{{\cos }^2}.4}&{{{\cos }^3}.4}&{{{\cos }^4}.4}&{{{\cos }^5}.4}&{{{\cos }^6}.4}\\1&{\cos .5}&{{{\cos }^2}.5}&{{{\cos }^3}.5}&{{{\cos }^4}.5}&{{{\cos }^5}.5}&{{{\cos }^6}.5}\\1&{\cos .6}&{{{\cos }^2}.6}&{{{\cos }^3}.6}&{{{\cos }^4}.6}&{{{\cos }^5}.6}&{{{\cos }^6}.6}\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}1&1&1&1&1&1&1\\1&{\cos .1}&{{{\cos }^2}.1}&{{{\cos }^3}.1}&{{{\cos }^4}.1}&{{{\cos }^5}.1}&{{{\cos }^6}.1}\\1&{\cos .2}&{{{\cos }^2}.2}&{{{\cos }^3}.2}&{{{\cos }^4}.2}&{{{\cos }^5}.2}&{{{\cos }^6}.2}\\1&{\cos .3}&{{{\cos }^2}.3}&{{{\cos }^3}.3}&{{{\cos }^4}.3}&{{{\cos }^5}.3}&{{{\cos }^6}.3}\\1&{\cos .4}&{{{\cos }^2}.4}&{{{\cos }^3}.4}&{{{\cos }^4}.4}&{{{\cos }^5}.4}&{{{\cos }^6}.4}\\1&{\cos .5}&{{{\cos }^2}.5}&{{{\cos }^3}.5}&{{{\cos }^4}.5}&{{{\cos }^5}.5}&{{{\cos }^6}.5}\\1&{\cos .6}&{{{\cos }^2}.6}&{{{\cos }^3}.6}&{{{\cos }^4}.6}&{{{\cos }^5}.6}&{{{\cos }^6}.6}\end{array}} \right|\\\det A \ne 0\end{array}\)

03

Draw a conclusion

By the invertible matrix theorem, has only a trivial solution. Thus, is a linearly independent set of functions defined on .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 2, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

2. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{5}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{7}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{5}}}\end{array}} \right)\)

Consider the polynomials \({{\bf{p}}_{\bf{1}}}\left( t \right) = {\bf{1}} + t\), \({{\bf{p}}_{\bf{2}}}\left( t \right) = {\bf{1}} - t\), \({{\bf{p}}_{\bf{3}}}\left( t \right) = {\bf{4}}\), \({{\bf{p}}_{\bf{4}}}\left( t \right) = {\bf{1}} + {t^{\bf{2}}}\), and \({{\bf{p}}_{\bf{5}}}\left( t \right) = {\bf{1}} + {\bf{2}}t + {t^{\bf{2}}}\), and let H be the subspace of \({P_{\bf{5}}}\) spanned by the set \(S = \left\{ {{{\bf{p}}_{\bf{1}}},\,{{\bf{p}}_{\bf{2}}},\;{{\bf{p}}_{\bf{3}}},\,{{\bf{p}}_{\bf{4}}},\,{{\bf{p}}_{\bf{5}}}} \right\}\). Use the method described in the proof of the Spanning Set Theorem (Section 4.3) to produce a basis for H. (Explain how to select appropriate members of S.)

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

21. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 2}&{ - 4.2}&{ - 4.8}&{ - 3.6}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).

Prove theorem 3 as follows: Given an \(m \times n\) matrix A, an element in \({\mathop{\rm Col}\nolimits} A\) has the form \(Ax\) for some x in \({\mathbb{R}^n}\). Let \(Ax\) and \(A{\mathop{\rm w}\nolimits} \) represent any two vectors in \({\mathop{\rm Col}\nolimits} A\).

  1. Explain why the zero vector is in \({\mathop{\rm Col}\nolimits} A\).
  2. Show that the vector \(A{\mathop{\rm x}\nolimits} + A{\mathop{\rm w}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} A\).
  3. Given a scalar \(c\), show that \(c\left( {A{\mathop{\rm x}\nolimits} } \right)\) is in \({\mathop{\rm Col}\nolimits} A\).

Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).

  1. Show that \(T\) is a linear transformation. (Hint: For arbitrary polynomials p, q in \({{\mathop{\rm P}\nolimits} _2}\), compute \(T\left( {{\mathop{\rm p}\nolimits} + {\mathop{\rm q}\nolimits} } \right)\) and \(T\left( {c{\mathop{\rm p}\nolimits} } \right)\).)
  2. Find a polynomial p in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\), and describe the range of \(T\).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free