(M) Let \({{\mathop{\rm a}\nolimits} _1},...,{{\mathop{\rm a}\nolimits} _5}\) denote the columns of the matrix \(A\), where \(A = \left( {\begin{array}{*{20}{c}}5&1&2&2&0\\3&3&2&{ - 1}&{ - 12}\\8&4&4&{ - 5}&{12}\\2&1&1&0&{ - 2}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right)\)

  1. Explain why \({{\mathop{\rm a}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _5}\) are in the column space of \(B\).
  2. Find a set of vectors that spans \({\mathop{\rm Nul}\nolimits} A\).
  3. Let \(T:{\mathbb{R}^5} \to {\mathbb{R}^4}\) be defined by \(T\left( x \right) = A{\mathop{\rm x}\nolimits} \). Explain why \(T\) is neither one-to-one nor onto.

Short Answer

Expert verified

a. It is proved that \({{\mathop{\rm a}\nolimits} _3}\)and \({a_5}\) are in the column space of \(B\).

b.The set of vectors that span \({\mathop{\rm Nul}\nolimits} A\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}{\frac{{ - 1}}{3}}\\{\frac{{ - 1}}{3}}\\1\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\frac{{ - 10}}{3}}\\{\frac{{26}}{3}}\\0\\4\\1\end{array}} \right)} \right\}\). The row-reduced echelon form of matrix A is \(\left( {\begin{array}{*{20}{c}}1&0&{\frac{1}{3}}&0&{\frac{{10}}{3}}\\0&1&{\frac{1}{3}}&0&{\frac{{ - 26}}{3}}\\0&0&0&1&{ - 4}\\0&0&0&0&0\end{array}} \right)\).

c. \(T\) is neither one-to-one nor onto.

Step by step solution

01

Write the augmented matrix

It is given that \(B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}5&1&2\\3&3&{ - 1}\\8&4&{ - 5}\\2&1&0\end{array}} \right)\).

Consider the augmented matrix \(\left( {\begin{array}{*{20}{c}}B&{{{\mathop{\rm a}\nolimits} _3}}\end{array}} \right)\) as shown below:

\(\left( {\begin{array}{*{20}{c}}B&{{{\mathop{\rm a}\nolimits} _3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}5&1&2&2\\3&3&{ - 1}&2\\8&4&{ - 5}&4\\2&1&0&1\end{array}} \right)\)

Consider the augmented matrix \(\left( {\begin{array}{*{20}{c}}B&{{{\mathop{\rm a}\nolimits} _5}}\end{array}} \right)\) as shown below:

\(\left( {\begin{array}{*{20}{c}}B&{{{\mathop{\rm a}\nolimits} _5}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}5&1&2&0\\3&3&{ - 1}&{ - 12}\\8&4&{ - 5}&{12}\\2&1&0&{ - 2}\end{array}} \right)\)

02

Convert the matrix into row-reduced echelon form

Consider the matrix \({\mathop{\rm C}\nolimits} = \left( {\begin{array}{*{20}{c}}5&1&2&2\\3&3&{ - 1}&2\\8&4&{ - 5}&4\\2&1&0&1\end{array}} \right)\).

Use the code in MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\mathop{\rm C}\nolimits} = \left( {5\,\,1\,\,\,2\,\,\,2;\,3\,\,\,3\,\,\, - 1\,\,\,2;\,\,8\,\,\,4\,\,\, - 5\,\,\,4;\,\,2\,\,\,1\,\,\,0\,\,\,1} \right)\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm rref}\nolimits} \left( {\mathop{\rm C}\nolimits} \right)\end{array}\)

\(\left( {\begin{array}{*{20}{c}}5&1&2&2\\3&3&{ - 1}&2\\8&4&{ - 5}&4\\2&1&0&1\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&0&{\frac{1}{3}}\\0&1&0&{\frac{1}{3}}\\0&0&1&0\\0&0&0&0\end{array}} \right)\)

Consider the matrix \({\mathop{\rm D}\nolimits} = \left( {\begin{array}{*{20}{c}}5&1&2&0\\3&3&{ - 1}&{ - 12}\\8&4&{ - 5}&{12}\\2&1&0&{ - 2}\end{array}} \right)\).

Use the code in MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\mathop{\rm D}\nolimits} = \left( {5\,\,1\,\,\,2\,\,\,0;\,3\,\,\,3\,\,\, - 1\,\,\, - 12;\,\,8\,\,\,4\,\,\, - 5\,\,\,12;\,\,2\,\,\,1\,\,\,0\,\,\, - 2} \right)\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm rref}\nolimits} \left( {\mathop{\rm D}\nolimits} \right)\end{array}\)

\(\left( {\begin{array}{*{20}{c}}5&1&2&0\\3&3&{ - 1}&{ - 12}\\8&4&{ - 5}&{12}\\2&1&0&{ - 2}\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&0&{\frac{{10}}{3}}\\0&1&0&{\frac{{ - 26}}{3}}\\0&0&1&{ - 4}\\0&0&0&0\end{array}} \right)\)

The same conclusions can be drawn when considering the row-reduced echelon form of A.

\(A \sim \left( {\begin{array}{*{20}{c}}1&0&{\frac{1}{3}}&0&{\frac{{10}}{3}}\\0&1&{\frac{1}{3}}&0&{\frac{{ - 26}}{3}}\\0&0&0&1&{ - 4}\\0&0&0&0&0\end{array}} \right)\)

03

Show that \({{\mathop{\rm a}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _5}\) are in the column space of B

A typical vector v in Col A has the property that the equation \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm v}\nolimits} \) is consistent.

It means \({{\mathop{\rm a}\nolimits} _3}\)and \({a_5}\) are in the column space of \(B\), and both the systems of equations are consistent.

Thus, it is proved that \({{\mathop{\rm a}\nolimits} _3}\)and \({a_5}\) is in the column space of \(B\).

04

Determine the set of vectors that span \({\mathop{\rm Nul}\nolimits} A\)

b)

The row-reduced echelon form of matrix A is shown below:

\(A \sim \left( {\begin{array}{*{20}{c}}1&0&{\frac{1}{3}}&0&{\frac{{10}}{3}}\\0&1&{\frac{1}{3}}&0&{\frac{{ - 26}}{3}}\\0&0&0&1&{ - 4}\\0&0&0&0&0\end{array}} \right)\)

Write the general solution of \(A{\mathop{\rm x}\nolimits} = 0\) using the row-reduced echelon form of matrix A.

\(\begin{array}{l}{{\mathop{\rm x}\nolimits} _1} = \frac{{ - 1}}{3}{{\mathop{\rm x}\nolimits} _3} - \frac{{10}}{3}{{\mathop{\rm x}\nolimits} _5}\\{{\mathop{\rm x}\nolimits} _2} = \frac{{ - 1}}{3}{{\mathop{\rm x}\nolimits} _3} + \frac{{26}}{3}{{\mathop{\rm x}\nolimits} _5}\\{{\mathop{\rm x}\nolimits} _4} = 4{{\mathop{\rm x}\nolimits} _5}\end{array}\)

\({{\mathop{\rm x}\nolimits} _3}\)and \({{\mathop{\rm x}\nolimits} _5}\)

The general solution of \(A{\mathop{\rm x}\nolimits} = 0\) in the parametric form is shown below:

\(\begin{array}{c}{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm x}\nolimits} _1}}\\{{{\mathop{\rm x}\nolimits} _2}}\\{{{\mathop{\rm x}\nolimits} _3}}\\{{{\mathop{\rm x}\nolimits} _4}}\\{{{\mathop{\rm x}\nolimits} _5}}\end{array}} \right)\\ = {{\mathop{\rm x}\nolimits} _3}\left( {\begin{array}{*{20}{c}}{\frac{{ - 1}}{3}}\\{\frac{{ - 1}}{3}}\\1\\0\\0\end{array}} \right) + {{\mathop{\rm x}\nolimits} _5}\left( {\begin{array}{*{20}{c}}{\frac{{ - 10}}{3}}\\{\frac{{26}}{3}}\\0\\4\\1\end{array}} \right)\end{array}\)

Thus, the set of vectors that span \({\mathop{\rm Nul}\nolimits} A\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}{\frac{{ - 1}}{3}}\\{\frac{{ - 1}}{3}}\\1\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\frac{{ - 10}}{3}}\\{\frac{{26}}{3}}\\0\\4\\1\end{array}} \right)} \right\}\).

05

Explain that T  is neither one-to-one nor onto

c)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformationand A be the standard matrix for T. Then, according to Theorem 12in section 1.9,

a.\(T\) maps \({\mathbb{R}^n}\)onto \({\mathbb{R}^m}\) if and only if the columns of A span \({\mathbb{R}^m}\).

b.\(T\) is one-to-one if and only if the columns of A are linearly independent.

The row-reduced echelon form of A demonstrates that the columns of \(A\) are linearly dependent and do not span \({\mathbb{R}^4}\).

Therefore, according to theorem 12, \(T\) is neither one-to-one nor onto.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the following two systems of equations:

\(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 1\\4{x_1} + {x_2} - 6{x_3} = 9\end{array}\) \(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 5\\4{x_1} + {x_2} - 6{x_3} = 45\end{array}\)

It can be shown that the first system of a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)

(M) Show thatis a linearly independent set of functions defined on. Use the method of Exercise 37. (This result will be needed in Exercise 34 in Section 4.5.)

If the null space of a\({\bf{5}} \times {\bf{6}}\)matrix A is 4-dimensional, what is the dimension of the row space of A?

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that a subset \(\left\{ {{{\bf{u}}_1},...,{{\bf{u}}_p}} \right\}\) in V is linearly independent if and only if the set of coordinate vectors \(\left\{ {{{\left( {{{\bf{u}}_{\bf{1}}}} \right)}_B},.....,{{\left( {{{\bf{u}}_p}} \right)}_B}} \right\}\) is linearly independent in \({\mathbb{R}^n}\)(Hint: Since the coordinate mapping is one-to-one, the following equations have the same solutions, \({c_{\bf{1}}}\),….,\({c_p}\))

\({c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p} = {\bf{0}}\) The zero vector V

\({\left( {{c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p}} \right)_B} = {\left( {\bf{0}} \right)_B}\) The zero vector in \({\mathbb{R}^n}\)a

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

16. If \(A\) is an \(m \times n\) matrix of rank\(r\), then a rank factorization of \(A\) is an equation of the form \(A = CR\), where \(C\) is an \(m \times r\) matrix of rank\(r\) and \(R\) is an \(r \times n\) matrix of rank \(r\). Such a factorization always exists (Exercise 38 in Section 4.6). Given any two \(m \times n\) matrices \(A\) and \(B\), use rank factorizations of \(A\) and \(B\) to prove that rank\(\left( {A + B} \right) \le {\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B\).

(Hint: Write \(A + B\) as the product of two partitioned matrices.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free