In Exercises 1-4, assume that the matrix A is row equivalent to B. Without calculations, list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A.

\(A = \left[ {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{4}}}&{\bf{9}}&{ - {\bf{7}}}\\{ - {\bf{1}}}&{\bf{2}}&{ - {\bf{4}}}&{\bf{1}}\\{\bf{5}}&{ - {\bf{6}}}&{{\bf{10}}}&{\bf{7}}\end{array}} \right]\)

\[B = \left[ {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}&{ - {\bf{1}}}&{\bf{5}}\\{\bf{0}}&{ - {\bf{2}}}&{\bf{5}}&{ - {\bf{6}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right]\]

Short Answer

Expert verified

Rank A=2, dim Nul A=2, \({\rm{Basis}}\left( {{\rm{Col}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\{ - 1}\\5\end{array}} \right],\;\;\left[ {\begin{array}{*{20}{c}}{ - 4}\\2\\{ - 6}\end{array}} \right]} \right\}\), \({\rm{basis}}\left( {{\rm{Row}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1&{ - 1}&9&{ - 7}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 1}&2&{ - 4}&1\end{array}} \right]} \right\}\), \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\{\frac{5}{2}}\\1\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 5}\\{ - 3}\\0\\1\end{array}} \right]} \right\}\)

Step by step solution

01

Find the rank of A

In the row equivalent matrix B, there are two non-zero rows. Therefore, the rank of A is 2.

02

Find dim Nul A

Using the rank theorem, you get:

\(\begin{array}{c}{\rm{rank}}\,A + \dim \,{\rm{Nul}}A = n\\2 + \dim \;{\rm{Nul}}\,A = 4\\\dim \;{\rm{Nul}}\,A = 4 - 2\\ = 2\end{array}\)

03

Find the basis of Col A

From matrix B:

\(B = \left[ {\begin{array}{*{20}{c}}1&0&{ - 1}&5\\0&{ - 2}&5&{ - 6}\\0&0&0&0\end{array}} \right]\)

The basis of Col A can be written as:

\({\rm{Basis}}\left( {{\rm{Col}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\{ - 1}\\5\end{array}} \right],\;\;\left[ {\begin{array}{*{20}{c}}{ - 4}\\2\\{ - 6}\end{array}} \right]} \right\}\)

04

Find the basis of row A

The basis of the row space of A can be written as:

\({\rm{basis}}\left( {{\rm{Row}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1&{ - 1}&9&{ - 7}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 1}&2&{ - 4}&1\end{array}} \right]} \right\}\)

05

Find the basis of row A

Write the augmented matrix for the system \(B{\bf{x}} = 0\).

\(M = \left[ {\begin{array}{*{20}{c}}1&0&{ - 1}&5&0\\0&{ - 2}&5&{ - 6}&0\\0&0&0&0&0\end{array}} \right]\)

Write the row reduced echelon form of matrix M.

\(M = \left[ {\begin{array}{*{20}{c}}1&0&{ - 1}&5&0\\0&{ - 2}&5&{ - 6}&0\\0&0&0&0&0\end{array}} \right]\)

Write the system of equations to get:

\(\begin{array}{c}{x_1} - {x_3} + 5{x_4} = 0\\{x_2} - \frac{5}{2}{x_3} + 3{x_4} = 0\end{array}\)

Consider \({x_3}\) and \({x_4}\) as free variables.

\(\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_3} - 5{x_4}}\\{\frac{5}{2}{x_3} - 3{x_4}}\\{{x_3}}\\{{x_4}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}1\\{\frac{5}{2}}\\1\\0\end{array}} \right]{x_3} + \left[ {\begin{array}{*{20}{c}}{ - 5}\\{ - 3}\\0\\1\end{array}} \right]{x_4}\end{array}\)

So, the null space of A is \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\{\frac{5}{2}}\\1\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 5}\\{ - 3}\\0\\1\end{array}} \right]} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let be a linear transformation from a vector space \(V\) \(T:V \to W\)in to vector space \(W\). Prove that the range of T is a subspace of . (Hint: Typical elements of the range have the form \(T\left( {\mathop{\rm x}\nolimits} \right)\) and \(T\left( {\mathop{\rm w}\nolimits} \right)\) for some \({\mathop{\rm x}\nolimits} ,\,{\mathop{\rm w}\nolimits} \)in \(V\).)\(W\)

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

13. Show that if \(P\) is an invertible \(m \times m\) matrix, then rank\(PA\)=rank\(A\).(Hint: Apply Exercise12 to \(PA\) and \({P^{ - 1}}\left( {PA} \right)\).)

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that a subset \(\left\{ {{{\bf{u}}_1},...,{{\bf{u}}_p}} \right\}\) in V is linearly independent if and only if the set of coordinate vectors \(\left\{ {{{\left( {{{\bf{u}}_{\bf{1}}}} \right)}_B},.....,{{\left( {{{\bf{u}}_p}} \right)}_B}} \right\}\) is linearly independent in \({\mathbb{R}^n}\)(Hint: Since the coordinate mapping is one-to-one, the following equations have the same solutions, \({c_{\bf{1}}}\),….,\({c_p}\))

\({c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p} = {\bf{0}}\) The zero vector V

\({\left( {{c_{\bf{1}}}{{\bf{u}}_{\bf{1}}} + ..... + {c_p}{{\bf{u}}_p}} \right)_B} = {\left( {\bf{0}} \right)_B}\) The zero vector in \({\mathbb{R}^n}\)a

What would you have to know about the solution set of a homogenous system of 18 linear equations 20 variables in order to understand that every associated nonhomogenous equation has a solution? Discuss.

(M) Let \({{\mathop{\rm a}\nolimits} _1},...,{{\mathop{\rm a}\nolimits} _5}\) denote the columns of the matrix \(A\), where \(A = \left( {\begin{array}{*{20}{c}}5&1&2&2&0\\3&3&2&{ - 1}&{ - 12}\\8&4&4&{ - 5}&{12}\\2&1&1&0&{ - 2}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right)\)

  1. Explain why \({{\mathop{\rm a}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _5}\) are in the column space of \(B\).
  2. Find a set of vectors that spans \({\mathop{\rm Nul}\nolimits} A\).
  3. Let \(T:{\mathbb{R}^5} \to {\mathbb{R}^4}\) be defined by \(T\left( x \right) = A{\mathop{\rm x}\nolimits} \). Explain why \(T\) is neither one-to-one nor onto.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free