In Exercises 1-4, assume that the matrix A is row equivalent to B. Without calculations, list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A.

\[A = \left[ {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{1}}&{ - {\bf{3}}}&{\bf{7}}&{\bf{9}}&{ - {\bf{9}}}\\{\bf{1}}&{\bf{2}}&{ - {\bf{4}}}&{{\bf{10}}}&{{\bf{13}}}&{ - {\bf{12}}}\\{\bf{1}}&{ - {\bf{1}}}&{ - {\bf{1}}}&{\bf{1}}&{\bf{1}}&{ - {\bf{3}}}\\{\bf{1}}&{ - {\bf{3}}}&{\bf{1}}&{ - {\bf{5}}}&{ - {\bf{7}}}&{\bf{3}}\\{\bf{1}}&{ - {\bf{2}}}&{\bf{0}}&{\bf{0}}&{ - {\bf{5}}}&{ - {\bf{4}}}\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{1}}&{ - {\bf{3}}}&{\bf{7}}&{\bf{9}}&{ - {\bf{9}}}\\{\bf{0}}&{\bf{1}}&{ - {\bf{1}}}&{\bf{3}}&{\bf{4}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{ - {\bf{1}}}&{ - {\bf{2}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right]\]

Short Answer

Expert verified

Rank A=3, dim Nul A=3, \({\rm{Basis}}\left( {{\rm{Col}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\1\\1\\1\\1\end{array}} \right],\;\;\left[ {\begin{array}{*{20}{c}}1\\2\\{ - 1}\\{ - 3}\\{ - 2}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}7\\{10}\\1\\{ - 5}\\0\end{array}} \right]} \right\}\), \[{\rm{basis}}\left( {{\rm{Row}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1&1&{ - 3}&7&9&{ - 9}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}0&1&{ - 1}&3&4&{ - 3}\end{array}} \right],\,\left[ {\begin{array}{*{20}{c}}0&0&0&1&{ - 1}&{ - 2}\end{array}} \right]} \right\}\], \[\left\{ {\left[ {\begin{array}{*{20}{c}}2\\1\\1\\0\\0\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 9}\\{ - 7}\\0\\1\\1\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\0\\2\\0\\1\end{array}} \right]} \right\}\]

Step by step solution

01

Find the rank of A

In the row equivalent matrix B, there are three non-zero rows. Therefore, the rank of A is 3.

02

Find dim Nul A

Using the rank theorem, you get:

\(\begin{array}{c}{\rm{rank}}\,A + \dim \,{\rm{Nul}}A = n\\3 + \dim \;{\rm{Nul}}\,A = 6\\\dim \;{\rm{Nul}}\,A = 6 - 3\\ = 3\end{array}\)

03

Find the basis of Col A

From matrix B:

\(B = \left[ {\begin{array}{*{20}{c}}1&1&{ - 3}&7&9&{ - 9}\\0&1&{ - 1}&3&4&{ - 3}\\0&0&0&1&{ - 1}&{ - 2}\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}} \right]\)

The basis of Col A can be written as:

\({\rm{Basis}}\left( {{\rm{Col}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\1\\1\\1\\1\end{array}} \right],\;\;\left[ {\begin{array}{*{20}{c}}1\\2\\{ - 1}\\{ - 3}\\{ - 2}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}7\\{10}\\1\\{ - 5}\\0\end{array}} \right]} \right\}\)

04

Find the basis of row A

The basis of the row space of A can be written as:

\[{\rm{Basis}}\left( {{\rm{Row}}\,A} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}}1&1&{ - 3}&7&9&{ - 9}\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}0&1&{ - 1}&3&4&{ - 3}\end{array}} \right],\,\left[ {\begin{array}{*{20}{c}}0&0&0&1&{ - 1}&{ - 2}\end{array}} \right]} \right\}\]

05

Find the basis of row A

Write the augmented matrix for the system \(B{\bf{x}} = 0\).

\(M = \left[ {\begin{array}{*{20}{c}}1&1&{ - 3}&7&9&{ - 9}&0\\0&1&{ - 1}&3&4&{ - 3}&0\\0&0&0&1&{ - 1}&{ - 2}&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\end{array}} \right]\)

Write the system of equations.

\(\begin{array}{c}{x_1} - 2{x_3} + 9{x_5} + 2{x_6} = 0\\{x_2} - {x_3} + 7{x_5} + 3{x_6} = 0\\{x_4} - {x_5} - 2{x_6} = 0\end{array}\)

Consider \({x_3}\), \({x_5}\), and \({x_6}\) as free variables.

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{2{x_3} - 9{x_5} - 2{x_6}}\\{{x_3} - 7{x_5} - 3{x_6}}\\{{x_3}}\\{{x_5} + 2{x_6}}\\{{x_5}}\\{{x_6}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}2\\1\\1\\0\\0\\0\end{array}} \right]{x_3} + \left[ {\begin{array}{*{20}{c}}{ - 9}\\{ - 7}\\0\\1\\1\\0\end{array}} \right]{x_5} + \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\0\\2\\0\\1\end{array}} \right]{x_6}\end{array}\]

So, the null space of A is \[\left\{ {\left[ {\begin{array}{*{20}{c}}2\\1\\1\\0\\0\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 9}\\{ - 7}\\0\\1\\1\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\0\\2\\0\\1\end{array}} \right]} \right\}\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a \({\bf{5}} \times {\bf{6}}\) matrix A has four pivot columns. What is dim Nul A? Is \({\bf{Col}}\,A = {\mathbb{R}^{\bf{3}}}\)? Why or why not?

Let \(A\) be an \(m \times n\) matrix of rank \(r > 0\) and let \(U\) be an echelon form of \(A\). Explain why there exists an invertible matrix \(E\) such that \(A = EU\), and use this factorization to write \(A\) as the sum of \(r\) rank 1 matrices. [Hint: See Theorem 10 in Section 2.4.]

In Exercise 18, Ais an \(m \times n\) matrix. Mark each statement True or False. Justify each answer.

18. a. If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.

b. Row operations preserve the linear dependence relations among the rows of A.

c. The dimension of the null space of A is the number of columns of A that are not pivot columns.

d. The row space of \({A^T}\) is the same as the column space of A.

e. If A and B are row equivalent, then their row spaces are the same.

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)

Which of the subspaces \({\rm{Row }}A\) , \({\rm{Col }}A\), \({\rm{Nul }}A\), \({\rm{Row}}\,{A^T}\) , \({\rm{Col}}\,{A^T}\) , and \({\rm{Nul}}\,{A^T}\) are in \({\mathbb{R}^m}\) and which are in \({\mathbb{R}^n}\) ? How many distinct subspaces are in this list?.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free