Chapter 4: Q5E (page 191)
If a \({\bf{3}} \times {\bf{8}}\) matrix A has a rank 3, find dim Nul A, dim Row A, and rank \({A^T}\).
Short Answer
5, 3, and 3
Chapter 4: Q5E (page 191)
If a \({\bf{3}} \times {\bf{8}}\) matrix A has a rank 3, find dim Nul A, dim Row A, and rank \({A^T}\).
5, 3, and 3
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: Determine if the matrix pairs in Exercises 19-22 are controllable.
22. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 1}&{ - 13}&{ - 12.2}&{ - 1.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).
Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).
Let H be an n-dimensional subspace of an n-dimensional vector space V. Explain why \(H = V\).
Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation.
a. What is the dimension of range of T if T is one-to-one mapping? Explain.
b. What is the dimension of the kernel of T (see section 4.2) if T maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^m}\)? Explain.
Explain what is wrong with the following discussion: Let \({\bf{f}}\left( t \right) = {\bf{3}} + t\) and \({\bf{g}}\left( t \right) = {\bf{3}}t + {t^{\bf{2}}}\), and note that \({\bf{g}}\left( t \right) = t{\bf{f}}\left( t \right)\). Then, \(\left\{ {{\bf{f}},{\bf{g}}} \right\}\) is linearly dependent because g is a multiple of f.
What do you think about this solution?
We value your feedback to improve our textbook solutions.