Let \(A = \left\{ {{{\mathop{\rm a}\nolimits} _1},{{\mathop{\rm a}\nolimits} _2},{{\mathop{\rm a}\nolimits} _3}} \right\}\) and \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},{{\mathop{\rm b}\nolimits} _2},{{\mathop{\rm b}\nolimits} _3}} \right\}\) be bases for a vector space \(V\), and suppose \({{\mathop{\rm a}\nolimits} _1} = 4{b_1} - {b_2}\), \({{\mathop{\rm a}\nolimits} _2} = - {b_1} + {b_2} + {{\mathop{\rm b}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _3} = {b_2} - 2{{\mathop{\rm b}\nolimits} _3}\).

a. Find the change-of-coordinates matrix from \(A\) to \(B\).

b. Find \({\left[ {\mathop{\rm x}\nolimits} \right]_B}\) for \({\mathop{\rm x}\nolimits} = 3{{\mathop{\rm a}\nolimits} _1} + 4{{\mathop{\rm a}\nolimits} _2} + {{\mathop{\rm a}\nolimits} _3}\).

Short Answer

Expert verified
  1. The change-of-coordinates matrix from \(A\) to \(B\) is \(\mathop P\limits_{B \leftarrow A} = \left[ {\begin{array}{*{20}{c}}4&{ - 1}&0\\{ - 1}&1&1\\0&1&{ - 2}\end{array}} \right]\).
  2. The \(B - \)coordinate vector is \({\left[ {\mathop{\rm x}\nolimits} \right]_B} = \left[ {\begin{array}{*{20}{c}}8\\2\\2\end{array}} \right]\).

Step by step solution

01

State the change-of-coordinate matrix

Let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\) and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},...,{{\mathop{\rm c}\nolimits} _n}} \right\}\) be bases of a vector space \(V\). Then according to Theorem 15,there is a unique \(n \times n\) matrix \(\mathop P\limits_{C \leftarrow B} \) such that \({\left[ {\mathop{\rm x}\nolimits} \right]_C} = \mathop P\limits_{C \leftarrow B} {\left[ {\mathop{\rm x}\nolimits} \right]_B}\).

The columns of \(\mathop P\limits_{C \leftarrow B} \) are the \(C - \)coordinate vectors of the vectors in the basis \(B\). That is, \(\mathop P\limits_{C \leftarrow B} = \left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathop{\rm b}\nolimits} _1}} \right]}_C}}&{{{\left[ {{{\mathop{\rm b}\nolimits} _2}} \right]}_C}}& \cdots &{{{\left[ {{{\mathop{\rm b}\nolimits} _n}} \right]}_C}}\end{array}} \right]\).

02

Determine the change-of-coordinate matrix from \(A\) to \(B\)

a)

It is given that \({{\mathop{\rm a}\nolimits} _1} = 4{{\mathop{\rm b}\nolimits} _1} - {{\mathop{\rm b}\nolimits} _2},{{\mathop{\rm a}\nolimits} _2} = - {{\mathop{\rm b}\nolimits} _1} + {{\mathop{\rm b}\nolimits} _2} + {{\mathop{\rm b}\nolimits} _3},\) and \({{\mathop{\rm a}\nolimits} _3} = {{\mathop{\rm b}\nolimits} _2} - 2{{\mathop{\rm b}\nolimits} _3}\). Then, \({\left[ {{{\mathop{\rm a}\nolimits} _1}} \right]_B} = \left[ {\begin{array}{*{20}{c}}4\\{ - 1}\\0\end{array}} \right],{\left[ {{{\mathop{\rm a}\nolimits} _2}} \right]_B} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\1\\1\end{array}} \right],{\left[ {{{\mathop{\rm a}\nolimits} _3}} \right]_B} = \left[ {\begin{array}{*{20}{c}}0\\1\\{ - 2}\end{array}} \right]\).

\(\begin{aligned} \mathop P\limits_{B \leftarrow A} &= \left[ {\begin{array}{*{20}{c}}{{{\left[ {{{\mathop{\rm a}\nolimits} _1}} \right]}_B}}&{{{\left[ {{{\mathop{\rm a}\nolimits} _2}} \right]}_B}}&{{{\left[ {{{\mathop{\rm a}\nolimits} _3}} \right]}_B}}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}4&{ - 1}&0\\{ - 1}&1&1\\0&1&{ - 2}\end{array}} \right]\end{aligned}\)

Thus, the change-of-coordinates matrix from \(A\) to \(B\) is \(\mathop P\limits_{B \leftarrow A} = \left[ {\begin{array}{*{20}{c}}4&{ - 1}&0\\{ - 1}&1&1\\0&1&{ - 2}\end{array}} \right]\).

03

Determine \({\left[ {\mathop{\rm x}\nolimits}   \right]_B}\) for \({\mathop{\rm x}\nolimits}  = 3{{\mathop{\rm a}\nolimits} _1} + 4{{\mathop{\rm a}\nolimits} _2} + {{\mathop{\rm a}\nolimits} _3}\)

b)

It is given that \({\mathop{\rm x}\nolimits} = 3{{\mathop{\rm a}\nolimits} _1} + 4{{\mathop{\rm a}\nolimits} _2} + {{\mathop{\rm a}\nolimits} _3}\), then \({\left[ {\mathop{\rm x}\nolimits} \right]_A} = \left[ {\begin{array}{*{20}{c}}3\\4\\1\end{array}} \right]\).

Use part (a) to compute the B-coordinate vector.

\(\begin{aligned} {\left[ {\mathop{\rm x}\nolimits} \right]_B} &= \mathop P\limits_{B \leftarrow A} {\left[ {\mathop{\rm x}\nolimits} \right]_A}\\ &= \left[ {\begin{array}{*{20}{c}}4&{ - 1}&0\\{ - 1}&1&1\\0&1&{ - 2}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\4\\1\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{12 - 4 + 0}\\{ - 3 + 5 + 1}\\{0 + 4 - 2}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}8\\2\\2\end{array}} \right]\end{aligned}\)

Therefore, the \(B - \)coordinate vector is \({\left[ {\mathop{\rm x}\nolimits} \right]_B} = \left[ {\begin{array}{*{20}{c}}8\\2\\2\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\)and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Given vectors, \({u_{\bf{1}}}\),….,\({u_p}\) and w in V, show that w is a linear combination of \({u_{\bf{1}}}\),….,\({u_p}\) if and only if \({\left( w \right)_B}\) is a linear combination of vectors \({\left( {{{\bf{u}}_{\bf{1}}}} \right)_B}\),….,\({\left( {{{\bf{u}}_p}} \right)_B}\).

[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

16. If \(A\) is an \(m \times n\) matrix of rank\(r\), then a rank factorization of \(A\) is an equation of the form \(A = CR\), where \(C\) is an \(m \times r\) matrix of rank\(r\) and \(R\) is an \(r \times n\) matrix of rank \(r\). Such a factorization always exists (Exercise 38 in Section 4.6). Given any two \(m \times n\) matrices \(A\) and \(B\), use rank factorizations of \(A\) and \(B\) to prove that rank\(\left( {A + B} \right) \le {\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B\).

(Hint: Write \(A + B\) as the product of two partitioned matrices.)

Is it possible for a nonhomogeneous system of seven equations in six unknowns to have a unique solution for some right-hand side of constants? Is it possible for such a system to have a unique solution for every right-hand side? Explain.

(M) Let \({{\mathop{\rm a}\nolimits} _1},...,{{\mathop{\rm a}\nolimits} _5}\) denote the columns of the matrix \(A\), where \(A = \left( {\begin{array}{*{20}{c}}5&1&2&2&0\\3&3&2&{ - 1}&{ - 12}\\8&4&4&{ - 5}&{12}\\2&1&1&0&{ - 2}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right)\)

  1. Explain why \({{\mathop{\rm a}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _5}\) are in the column space of \(B\).
  2. Find a set of vectors that spans \({\mathop{\rm Nul}\nolimits} A\).
  3. Let \(T:{\mathbb{R}^5} \to {\mathbb{R}^4}\) be defined by \(T\left( x \right) = A{\mathop{\rm x}\nolimits} \). Explain why \(T\) is neither one-to-one nor onto.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free