In Exercises 7-10, let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},{{\mathop{\rm b}\nolimits} _2}} \right\}\) and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},{{\mathop{\rm c}\nolimits} _2}} \right\}\) be bases for \({\mathbb{R}^2}\). In each exercise, find the change-of-coordinates matrix from \(B\) to \(C\) and the change-of-coordinates matrix from \(C\) to \(B\).

8. \({{\mathop{\rm b}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}{ - 1}\\8\end{array}} \right),{{\mathop{\rm b}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}1\\{ - 5}\end{array}} \right),{{\mathop{\rm c}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\4\end{array}} \right),{{\mathop{\rm c}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}1\\1\end{array}} \right)\).

Short Answer

Expert verified

The change-of-coordinates matrix from \(B\) to \(C\) is \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}3&{ - 2}\\{ - 4}&3\end{array}} \right)\). The change-of-coordinates matrix from \(C\) to \(B\) is \(\mathop P\limits_{B \leftarrow C} = \left( {\begin{array}{*{20}{c}}3&2\\4&3\end{array}} \right)\).

Step by step solution

01

Find the change-of-coordinate matrix

Let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\)and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},...,{{\mathop{\rm c}\nolimits} _n}} \right\}\) be bases of a vector space \(V\). Then according toTheorem 15,there is a unique \(n \times n\) matrix \(\mathop P\limits_{C \leftarrow B} \) such that

\({\left( {\mathop{\rm x}\nolimits} \right)_C} = \mathop P\limits_{C \leftarrow B} {\left( {\mathop{\rm x}\nolimits} \right)_B}\). …(1)

The columns of \(\mathop P\limits_{C \leftarrow B} \) are the \(C - \)coordinate vectors of the vectors in the basis \(B\). That is, \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}{{{\left( {{{\mathop{\rm b}\nolimits} _1}} \right)}_C}}&{{{\left( {{{\mathop{\rm b}\nolimits} _2}} \right)}_C}}& \cdots &{{{\left( {{{\mathop{\rm b}\nolimits} _n}} \right)}_C}}\end{array}} \right)\).

02

Determine the change-of-coordinates from \(B\) to \(C\)

Write the augmented matrix as shown below:

Perform an elementary row operation to produce a row-reduced echelon form of the matrix.

At row 2, multiply row 1 by 4 and subtract it from row 2.

\( \sim \left( {\begin{array}{*{20}{c}}1&1&{ - 1}&1\\0&{ - 3}&{12}&{ - 9}\end{array}} \right)\)

At row 2, multiply row 2 by \( - \frac{1}{3}\).

\( \sim \left( {\begin{array}{*{20}{c}}1&1&{ - 1}&1\\0&1&{ - 4}&3\end{array}} \right)\)

At row 1, subtract row 2 from row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}\\0&1&{ - 4}&3\end{array}} \right)\)

Therefore, \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}3&{ - 2}\\{ - 4}&3\end{array}} \right)\).

Thus, the change-of-coordinates matrix from \(B\) to \(C\) is \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}3&{ - 2}\\{ - 4}&3\end{array}} \right)\).

03

Determine the change-of-coordinates from \(C\) to \(B\)

It is known that \({\left( {\mathop P\limits_{C \leftarrow B} } \right)^{ - 1}}\) is the matrix that converts \(C - \)coordinates into \(B - \)coordinates. That is, \({\left( {\mathop P\limits_{C \leftarrow B} } \right)^{ - 1}} = \mathop P\limits_{B \leftarrow C} \).

\(\begin{aligned} \mathop P\limits_{B \leftarrow C} &= {\left( {\mathop P\limits_{C \leftarrow B} } \right)^{ - 1}}\\ &= {\left( {\begin{array}{*{20}{c}}3&{ - 2}\\{ - 4}&3\end{array}} \right)^{ - 1}}\\ &= \frac{1}{1}\left( {\begin{array}{*{20}{c}}3&2\\4&3\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}3&2\\4&3\end{array}} \right)\end{aligned}\)

Thus, the change-of-coordinates matrix from \(C\) to \(B\) is \(\mathop P\limits_{B \leftarrow C} = \left( {\begin{array}{*{20}{c}}3&2\\4&3\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix\(A\)is\(m \times n\).

15. Let\(A\)be an\(m \times n\)matrix, and let\(B\)be a\(n \times p\)matrix such that\(AB = 0\). Show that\({\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B \le n\). (Hint: One of the four subspaces\({\mathop{\rm Nul}\nolimits} A\),\({\mathop{\rm Col}\nolimits} A,\,{\mathop{\rm Nul}\nolimits} B\), and\({\mathop{\rm Col}\nolimits} B\)is contained in one of the other three subspaces.)

[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.

A scientist solves a nonhomogeneous system of ten linear equations in twelve unknowns and finds that three of the unknowns are free variables. Can the scientist be certain that, if the right sides of the equations are changed, the new nonhomogeneous system will have a solution? Discuss.

If A is a \({\bf{4}} \times {\bf{3}}\) matrix, what is the largest possible dimension of the row space of A? If Ais a \({\bf{3}} \times {\bf{4}}\) matrix, what is the largest possible dimension of the row space of A? Explain.

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

22. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 1}&{ - 13}&{ - 12.2}&{ - 1.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free