Chapter 4: Q9E (page 191)
The null space of a \({\bf{5}} \times {\bf{6}}\) matrix A is 4-dimensional, what is the dimension of the column space of A.
Short Answer
The dimension of the column space of A is 2.
Chapter 4: Q9E (page 191)
The null space of a \({\bf{5}} \times {\bf{6}}\) matrix A is 4-dimensional, what is the dimension of the column space of A.
The dimension of the column space of A is 2.
All the tools & learning materials you need for study success - in one app.
Get started for free
If the null space of A \({\bf{7}} \times {\bf{6}}\) matrix A is 4-dimensional, what is the dimension of the column space of A?
If a\({\bf{6}} \times {\bf{3}}\)matrix A has a rank 3, find dim Nul A, dim Row A, and rank\({A^T}\).
If A is a \({\bf{4}} \times {\bf{3}}\) matrix, what is the largest possible dimension of the row space of A? If Ais a \({\bf{3}} \times {\bf{4}}\) matrix, what is the largest possible dimension of the row space of A? Explain.
Question: Determine if the matrix pairs in Exercises 19-22 are controllable.
22. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 1}&{ - 13}&{ - 12.2}&{ - 1.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).
Consider the polynomials \({{\bf{p}}_{\bf{1}}}\left( t \right) = {\bf{1}} + t\), \({{\bf{p}}_{\bf{2}}}\left( t \right) = {\bf{1}} - t\), \({{\bf{p}}_{\bf{3}}}\left( t \right) = {\bf{4}}\), \({{\bf{p}}_{\bf{4}}}\left( t \right) = {\bf{1}} + {t^{\bf{2}}}\), and \({{\bf{p}}_{\bf{5}}}\left( t \right) = {\bf{1}} + {\bf{2}}t + {t^{\bf{2}}}\), and let H be the subspace of \({P_{\bf{5}}}\) spanned by the set \(S = \left\{ {{{\bf{p}}_{\bf{1}}},\,{{\bf{p}}_{\bf{2}}},\;{{\bf{p}}_{\bf{3}}},\,{{\bf{p}}_{\bf{4}}},\,{{\bf{p}}_{\bf{5}}}} \right\}\). Use the method described in the proof of the Spanning Set Theorem (Section 4.3) to produce a basis for H. (Explain how to select appropriate members of S.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.