Chapter 14: Q. 16 (page 904) URL copied to clipboard! Now share some education! a function f is defined over an interval a,b(a) Graph f, indicating the area A under f from a to b.(b) Approximate the area A by partitioning a,binto four subintervals of equal length and choosing u as the leftendpoint of each subinterval.(c) Approximate the area A by partitioning a,binto eightsubintervals of equal length and choosing u as the leftendpoint of each subinterval.(d) Express the area A as an integral.(e) Use a graphing utility to approximate the integral.fx=x31,5 Short Answer Expert verified (a)(b) The four subinterval are 1,2,2,3,3,4,4,5and the area is 100.(c) The eight subinterval are localid="1647077414809" 1,32,32,2,2,52,52,3,3,72,72,4,4,92,92,5and the area is 2538.(d) Area under the curve as an integral is given by ∫abf(x)dx=∫15x3dxe) Using graphing utility the area found islocalid="1647078857366" 763. Step by step solution 01 Part (a) Step 1. Given fx=x31,5 02 Part (a) Step 2. Graph 03 Part (b) Step 1. Calculation The area under the curve can be found usingA=b-anfu1+fu2+fu3+fu4whereu1,u2,u3,u4are4equalinterval.nowintervalwillbedecidedbyb-an=5-14=1Therefore1,2,2,3,3,4,4,5aretherespectiveintervals.ApplyingtheformulaforareawegetA=b-anfu1+fu2+fu3+fu4=11+8+27+64=100 04 Part (c) Step 1. Calculation A=b-anfu1+fu2+fu3+fu4+fu5+fu6+fu7+fu8whereu1,u2,u3,u4,u5,u6,u7,u8are8equalinterval.nowintervalwillbedecidedbyb-an=5-18=12Therefore1,32,32,2,2,52,52,3,3,72,72,4,4,92,92,5aretherespectiveintervals.A=b-anfu1+fu2+fu3+fu4+fu5+fu6+fu7+fu8=121+278+8+1258+27+3438+64+7298=12100+12248=2538 05 Part (d) Step 1. Area in integral form f(x)=x3a,b=1,5∫abf(x)dx=∫15x3dx 06 Part (e) Step 1. Area using a graphing utility The area comes out to be∫15x3dx=763 Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!