Moment of Inertia The moment of inertia I of an object is a measure of how easy it is to rotate the object about some fixed point. In engineering mechanics, it is sometimes necessary to compute moments of inertia with respect to a set of rotated axes. These moments are given by the equations

Iu=Ixcos2θ+Iysin2θ2IxysinθcosθIv=Ixsin2θ+Iycos2θ+2Ixysinθcosθ

Use Product-to-Sum Formulas to show that

Iu=Ix+Iy2+IxIy2cos(2θ)Ixysin(2θ)

and

Iv=Ix+Iy2-IxIy2cos(2θ)+Ixysin(2θ)

Short Answer

Expert verified

Iu=Ix+Iy2+IxIy2cos(2θ)Ixysin(2θ)is true.

Iv=Ix+Iy2IxIy2cos(2θ)+Ixysin(2θ) is true.

Step by step solution

01

Step 1. Write the given equation for Iu

First rewrite the given equation for Iuby applying the trigonometric identity

role="math" localid="1646559925103" sinacosb=12sin(a+b)+sin(a-b)

role="math" localid="1646559354355" Iu=Ixcos2θ+Iysin2θ2Ixysinθcosθ=Ixcos2θ+Iysin2θ2Ixy12[sin(θ+θ)+sin(θθ)]=Ixcos2θ+Iysin2θ2Ixy12[sin(2θ)+sin(0)]=Ixcos2θ+Iysin2θIxy[sin(2θ)]=Ixcos2θ+Iysin2θIxysin(2θ)

02

Step 2. Rewrite the resulting Iu equation

Rewrite the resulting Iuequation by applying the trigonometric identity.

localid="1646560062672" cos2(x)=1+cos(2x)2

localid="1646560076367" sin2(x)=1-cos(2x)2

Iu=Ixcos2θ+Iysin2θIxysin(2θ)=Ix1+cos(2θ)2+Iy1cos(2θ)2Ixysin(2θ)=Ix+Ixcos(2θ)2+IyIycos(2θ)2Ixysin(2θ)=Ix2+Ixcos(2θ)2+Iy2Iycos(2θ)2Ixysin(2θ)=Ix+Iy2+Ixcos(2θ)2Iycos(2θ)2Ixysin(2θ)=Ix+Iy2+cos(2θ)Ix2Iy2Ixysin(2θ)=Ix+Iy2+IxIy2cos(2θ)Ixysin(2θ)

This verifies that the equationlocalid="1646560409930" Iu=Ix+Iy2+IxIy2cos(2θ)Ixysin(2θ)is true.

03

Step 3. Rewrite the given equation for Iv

Apply the trigonometric identity sinacosb=12sin(a+b)+sin(a-b)

Iv=Ixsin2θ+Iycos2θ+2Ixysinθcosθ=Ixsin2θ+Iycos2θ+2Ixy12[sin(θ+θ)+sin(θθ)]=Ixsin2θ+Iycos2θ+2Ixy12[sin(2θ)+sin(0)]=Ixsin2θ+Iycos2θ+Ixy[sin(2θ)]=Ixsin2θ+Iycos2θ+Ixysin(2θ)

04

Step 4. Rewrite the resulting Iv equation

Rewrite the resulting Ivequation by applying the trigonometric identity.

cos2(x)=1+cos(2x)2

sin2(x)=1-cos(2x)2

Iv=Ixsin2θ+Iycos2θ+Ixysin(2θ)=Ix1cos(2θ)2+Iy1+cos(2θ)2+Ixysin(2θ)=IxIxcos(2θ)2+Iy+Iycos(2θ)2+Ixysin(2θ)=Ix2Ixcos(2θ)2+Iy2+Iycos(2θ)2+Ixysin(2θ)=Ix+Iy2Ixcos(2θ)2+Iycos(2θ)2+Ixysin(2θ)=Ix+Iy2+cos(2θ)Ix2+Iy2+Ixysin(2θ)=Ix+Iy2+Ix+Iy2cos(2θ)+Ixysin(2θ)=Ix+Iy2IxIy2cos(2θ)+Ixysin(2θ)

localid="1646560482416" Iv=Ix+Iy2IxIy2cos(2θ)+Ixysin(2θ)is TRUE.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free