Use the Law of Cosines to prove the identity

cosAa+cosBb+cosCc=a2+b2+c22abc

Short Answer

Expert verified

The identity cosAa+cosBb+cosCc=a2+b2+c22abcis proved.

Step by step solution

01

Step 1. Given information 

Identity: cosAa+cosBb+cosCc=a2+b2+c22abc

02

Step 2. Calculation 

Law of Cosines -

a2=b2+c2-2bccosA1

b2=a2+c2-2accosB2

c2=a2+b2-2abcosC3

Now add1,2and3, we will get -

role="math" localid="1647111133522" a2+b2+c2=b2+c2-2bccosA+a2+c2-2accosB+a2+b2-2abcosC

role="math" localid="1647111143924" a2+b2+c2=2a2+2b2+2c2-2bccosA-2accosB-2abcosC

role="math" localid="1647111153146" a2+b2+c2+2bccosA+2accosB+2abcosC=2a2+2b2+2c2

role="math" localid="1647111163322" 2bccosA+2accosB+2abcosC=2a2+2b2+2c2-a2-b2-c2

role="math" localid="1647111170365" 2bccosA+accosB+abcosC=a2+b2+c2

role="math" localid="1647111180525" bccosA+accosB+abcosC=a2+b2+c22

role="math" localid="1647111192253" bccosA+accosB+abcosCabc=a2+b2+c22abc

bccosAabc+accosBabc+abcosCabc=a2+b2+c22abc

role="math" localid="1647111270976" cosAa+cosBb+cosCc=a2+b2+c22abc

Hence proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free