The following model was used to relate E(y) to a single qualitative variable with four levels:E(y)=β0+β1x1+β2x2+β3x3where

x1=1iflevel20ifnotx2=1iflevel30ifnotx3=1iflevel40ifnot

This model was fit to n = 30 data points, and the following result was obtained:

y^=10.2-4x1+12x2+2x3

  1. Use the least-squares prediction equation to find the estimate of E(y) for each level of the qualitative independent variable.
  2. Specify the null and alternative hypotheses you would use to test whether E(y) is the same for all four levels of the independent variable.

Short Answer

Expert verified

a.For x1=1,x2=0and x3=0;

y^=10.2-4(1)+12(0)+2(0)=6.2


For x2=1,x1=0and x3=0

y^=10.2-4(0)+12(1)+2(0)=1.8


. Forx3=1,x1=0andx2=0

y^=10.2-4(0)+12(0)+2(1)=8.2

b. The hypothesis to be tested can be written asH0:β1=β2=β3=0

Ha:At least one of the parameters β1,β2andβ3differfrom0

Step by step solution

01

Mean values for each level of the qualitative independent variable

The value E(Y) for a different level of the qualitative independent variable

Can be found by substituting in place of other two variables

Forx1=1,x2=0andx3=0;

y^=10.2-4(1)+12(0)+2(0)=6.2

Forx2=1,x1=0,andx3=0;

y^=10.2-4(0)+12(1)+2(0)=1.8

Forx3=1,x1=0,andx2=0;

y^=10.2-4(0)+12(0)+2(1)=8.2

02

Hypothesis testing

Here, the null hypothesis becomes that the means for the three groups are equal meaning μ1=μ2=μ3while the alternate hypothesis implies that at least two of the three means (μ1,μ2,and μ3) differ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Women in top management. Refer to the Journal of Organizational Culture, Communications and Conflict (July 2007) study on women in upper management positions at U.S. firms, Exercise 11.73 (p. 679). Monthly data (n = 252 months) were collected for several variables in an attempt to model the number of females in managerial positions (y). The independent variables included the number of females with a college degree (x1), the number of female high school graduates with no college degree (x2), the number of males in managerial positions (x3), the number of males with a college degree (x4), and the number of male high school graduates with no college degree (x5). The correlations provided in Exercise 11.67 are given in each part. Determine which of the correlations results in a potential multicollinearity problem for the regression analysis.

  1. The correlation relating number of females in managerial positions and number of females with a college degree: r =0.983.

  2. The correlation relating number of females in managerial positions and number of female high school graduates with no college degree: r =0.074.

  3. The correlation relating number of males in managerial positions and number of males with a college degree: r =0.722.

  4. The correlation relating number of males in managerial positions and number of male high school graduates with no college degree: r =0.528.

Goal congruence in top management teams. Do chief executive officers (CEOs) and their top managers always agree on the goals of the company? Goal importance congruence between CEOs and vice presidents (VPs) was studied in the Academy of Management Journal (Feb. 2008). The researchers used regression to model a VP’s attitude toward the goal of improving efficiency (y) as a function of the two quantitative independent variables level of CEO (x1)leadership and level of congruence between the CEO and the VP (x2). A complete second-order model in x1and x2was fit to data collected for n = 517 top management team members at U.S. credit unions.

a. Write the complete second-order model for E(y).

b. The coefficient of determination for the model, part a, was reported asR2=0.14. Interpret this value.

c. The estimate of theβ-value for the(x2)2term in the model was found to be negative. Interpret this result, practically.

d. A t-test on theβ-value for the interaction term in the model,x1x2, resulted in a p-value of 0.02. Practically interpret this result, usingα=0.05.

Question: Failure times of silicon wafer microchips. Researchers at National Semiconductor experimented with tin-lead solder bumps used to manufacture silicon wafer integrated circuit chips (International Wafer-Level Packaging Conference, November 3–4, 2005). The failure times of the microchips (in hours) were determined at different solder temperatures (degrees Celsius). The data for one experiment are given in the table. The researchers want to predict failure time (y) based on solder temperature (x).

  1. Construct a scatterplot for the data. What type of relationship, linear or curvilinear, appears to exist between failure time and solder temperature?
  2. Fit the model,E(y)=β0+β1x+β2x2, to the data. Give the least-squares prediction equation.
  3. Conduct a test to determine if there is upward curvature in the relationship between failure time and solder temperature. (use.α=0.05)

Question: Bus Rapid Transit study. Bus Rapid Transit (BRT) is a rapidly growing trend in the provision of public transportation in America. The Center for Urban Transportation Research (CUTR) at the University of South Florida conducted a survey of BRT customers in Miami (Transportation Research Board Annual Meeting, January 2003). Data on the following variables (all measured on a 5-point scale, where 1 = very unsatisfied and 5 = very satisfied) were collected for a sample of over 500 bus riders: overall satisfaction with BRT (y), safety on bus (x1), seat availability (x2), dependability (x3), travel time (x4), cost (x5), information/maps (x6), convenience of routes (x7), traffic signals (x8), safety at bus stops (x9), hours of service (x10), and frequency of service (x11). CUTR analysts used stepwise regression to model overall satisfaction (y).

a. How many models are fit at step 1 of the stepwise regression?

b. How many models are fit at step 2 of the stepwise regression?

c. How many models are fit at step 11 of the stepwise regression?

d. The stepwise regression selected the following eight variables to include in the model (in order of selection): x11, x4, x2, x7, x10, x1, x9, and x3. Write the equation for E(y) that results from stepwise regression.

e. The model, part d, resulted in R2 = 0.677. Interpret this value.

f. Explain why the CUTR analysts should be cautious in concluding that the best model for E(y) has been found.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free