Question: Job performance under time pressure. Refer to the Academy of Management Journal (October 2015) study of how time pressure affects team job performance, Exercise 12.89 (p. 765). Recall that the researchers hypothesized a complete second-order model relating team performance (y) to perceived time pressure (x1), and whether or not the team had an effective leader (x2 = 1 if yes, 0 if no):

E(Y)=β0+β1x1+β2x22+β3x2+β4x1x2+β5x12x2

a) How would you determine whether the rate of increase of team performance with time pressure depends on effectiveness of the team leader?

b) For fixed time pressure, how would you determine whether the mean team performance differs for teams with effective and non-effective team leaders?

Short Answer

Expert verified

Answer

a. The rate of increase of team performance with time pressure depends on effectiveness of the team leader will be determined by the interaction term. The interaction term explains the relation between the independent variables (here time pressure and effectiveness of the team leader) and how that relationship affects the dependent variable (team performance).

b. For given fixed time pressure, the changes in mean team performance for teams with effective and non-effective team leaders can be explained for effective team leader by and for non-effective team leader by .

Step by step solution

01

Interaction term

a. The rate of increase of team performance with time pressure depends on effectiveness of the team leader will be determined by the interaction term. The interaction term explains the relation between the independent variables (here time pressure and effectiveness of the team leader) and how that relationship affects the dependent variable (team performance).

b. For given fixed time pressure, the changes in mean team performance for teams with effective and non-effective team leaders can be explained for effective team leader by

.byE(y)=(β0+β3)+(β1+β4)x1+(β2+β5)x12andfornon-effectiveteamleaderbyE(y)=β0+β1x1+β2x12.

02

Interaction term

For given fixed time pressure, the changes in mean team performance for teams with effective and non-effective team leaders can be explained by putting x2 = 1 and 0 for effective and non-effective leader respectively.

Mathematically, for effective team leader

E(y)=β0+β1x1+β2x12+β3x2+β4x1x2+β5x12x2forx2=1E(y)=β0+β1x1+β2x12+β3(1)+β4x1(1)+β5x12(1)E(y)=(β0+β3)+(β1+β4)x1+(β2+β5)x12Andfornon-effectiveteamleaderE(y)=β0+β1x1+β2x12+β3x2+β4x1x2+β5x12x2forx2=0E(y)=β0+β1x1+β2x12+β3(0)+β4x1(0)+β5x12(0)E(y)=β0+β1x1+β2x12

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Novelty of a vacation destination. Many tourists choose a vacation destination based on the newness or uniqueness (i.e., the novelty) of the itinerary. The relationship between novelty and vacationing golfers’ demographics was investigated in the Annals of Tourism Research (Vol. 29, 2002). Data were obtained from a mail survey of 393 golf vacationers to a large coastal resort in the south-eastern United States. Several measures of novelty level (on a numerical scale) were obtained for each vacationer, including “change from routine,” “thrill,” “boredom-alleviation,” and “surprise.” The researcher employed four independent variables in a regression model to predict each of the novelty measures. The independent variables were x1 = number of rounds of golf per year, x2 = total number of golf vacations taken, x3 = number of years played golf, and x4 = average golf score.

  1. Give the hypothesized equation of a first-order model for y = change from routine.
  1. A test of H0: β3 = 0 versus Ha: β3< 0 yielded a p-value of .005. Interpret this result if α = .01.
  1. The estimate of β3 was found to be negative. Based on this result (and the result of part b), the researcher concluded that “those who have played golf for more years are less apt to seek change from their normal routine in their golf vacations.” Do you agree with this statement? Explain.
  1. The regression results for three dependent novelty measures, based on data collected for n = 393 golf vacationers, are summarized in the table below. Give the null hypothesis for testing the overall adequacy of the first-order regression model.
  1. Give the rejection region for the test, part d, for α = .01.
  1. Use the test statistics reported in the table and the rejection region from part e to conduct the test for each of the dependent measures of novelty.
  1. Verify that the p-values reported in the table support your conclusions in part f.
  1. Interpret the values of R2 reported in the table.

Question: Shared leadership in airplane crews. Refer to the Human Factors (March 2014) study of shared leadership by the cockpit and cabin crews of a commercial airplane, Exercise 8.14 (p. 466). Recall that simulated flights were taken by 84 six-person crews, where each crew consisted of a 2-person cockpit (captain and first officer) and a 4-person cabin team (three flight attendants and a purser.) During the simulation, smoke appeared in the cabin and the reactions of the crew were monitored for teamwork. One key variable in the study was the team goal attainment score, measured on a 0 to 60-point scale. Multiple regression analysis was used to model team goal attainment (y) as a function of the independent variables job experience of purser (x1), job experience of head flight attendant (x2), gender of purser (x3), gender of head flight attendant (x4), leadership score of purser (x5), and leadership score of head flight attendant (x6).

a. Write a complete, first-order model for E(y) as a function of the six independent variables.

b. Consider a test of whether the leadership score of either the purser or the head flight attendant (or both) is statistically useful for predicting team goal attainment. Give the null and alternative hypotheses as well as the reduced model for this test.

c. The two models were fit to the data for the n = 60 successful cabin crews with the following results: R2 = .02 for reduced model, R2 = .25 for complete model. On the basis of this information only, give your opinion regarding the null hypothesis for successful cabin crews.

d. The p-value of the subset F-test for comparing the two models for successful cabin crews was reported in the article as p 6 .05. Formally test the null hypothesis using α = .05. What do you conclude?

e. The two models were also fit to the data for the n = 24 unsuccessful cabin crews with the following results: R2 = .14 for reduced model, R2 = .15 for complete model. On the basis of this information only, give your opinion regarding the null hypothesis for unsuccessful cabin crews.

f. The p-value of the subset F-test for comparing the two models for unsuccessful cabin crews was reported in the article as p < .10. Formally test the null hypothesis using α = .05. What do you conclude?

Question: Predicting elements in aluminum alloys. Aluminum scraps that are recycled into alloys are classified into three categories: soft-drink cans, pots and pans, and automobile crank chambers. A study of how these three materials affect the metal elements present in aluminum alloys was published in Advances in Applied Physics (Vol. 1, 2013). Data on 126 production runs at an aluminum plant were used to model the percentage (y) of various elements (e.g., silver, boron, iron) that make up the aluminum alloy. Three independent variables were used in the model: x1 = proportion of aluminum scraps from cans, x2 = proportion of aluminum scraps from pots/pans, and x3 = proportion of aluminum scraps from crank chambers. The first-order model, , was fit to the data for several elements. The estimates of the model parameters (p-values in parentheses) for silver and iron are shown in the accompanying table.

(A) Is the overall model statistically useful (at α = .05) for predicting the percentage of silver in the alloy? If so, give a practical interpretation of R2.

(b)Is the overall model statistically useful (at a = .05) for predicting the percentage of iron in the alloy? If so, give a practical interpretation of R2.

(c)Based on the parameter estimates, sketch the relationship between percentage of silver (y) and proportion of aluminum scraps from cans (x1). Conduct a test to determine if this relationship is statistically significant at α = .05.

(d)Based on the parameter estimates, sketch the relationship between percentage of iron (y) and proportion of aluminum scraps from cans (x1). Conduct a test to determine if this relationship is statistically significant at α = .05.

Consider the following data that fit the quadratic modelE(y)=β0+β1x+β2x2:

a. Construct a scatterplot for this data. Give the prediction equation and calculate R2based on the model above.

b. Interpret the value ofR2.

c. Justify whether the overall model is significant at the 1% significance level if the data result into a p-value of 0.000514.

Write a model that relates E(y) to two independent variables—one quantitative and one qualitative at four levels. Construct a model that allows the associated response curves to be second-order but does not allow for interaction between the two independent variables.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free