When a multiple regression model is used for estimating the mean of the dependent variable and for predicting a new value of y, which will be narrower—the confidence interval for the mean or the prediction interval for the new y-value? Why?

Short Answer

Expert verified

Confidence interval is narrower than the prediction interval because Prediction intervals must account for both the uncertainty in estimating the population mean, plus the random variation of the individual values. So a prediction interval is always wider than a confidence interval. Also, the prediction interval will not converge to a single value as the sample size increases.

Step by step solution

01

Difference in confidence and prediction interval

The prediction interval predicts in what range a future individual observation will fall, while a confidence interval shows the likely range of values associated with some statistical parameter of the data, such as the population mean.

02

Narrower of the two

Confidence interval is narrower than the prediction interval because Prediction intervals must account for both the uncertainty in estimating the population mean, plus the random variation of the individual values. So a prediction interval is always wider than a confidence interval. Also, the prediction interval will not converge to a single value as the sample size increases.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Shopping on Black Friday. Refer to the International Journal of Retail and Distribution Management (Vol. 39, 2011) study of shopping on Black Friday (the day after Thanksgiving), Exercise 6.16 (p. 340). Recall that researchers conducted interviews with a sample of 38 women shopping on Black Friday to gauge their shopping habits. Two of the variables measured for each shopper were age (x) and number of years shopping on Black Friday (y). Data on these two variables for the 38 shoppers are listed in the accompanying table.

  1. Fit the quadratic model, E(y)=β0+β1x+β2x2, to the data using statistical software. Give the prediction equation.
  2. Conduct a test of the overall adequacy of the model. Use α=0.01.
  3. Conduct a test to determine if the relationship between age (x) and number of years shopping on Black Friday (y) is best represented by a linear or quadratic function. Use α=0.01.

Question: Orange juice demand study. A chilled orange juice warehousing operation in New York City was experiencing too many out-of-stock situations with its 96-ounce containers. To better understand current and future demand for this product, the company examined the last 40 days of sales, which are shown in the table below. One of the company’s objectives is to model demand, y, as a function of sale day, x (where x = 1, 2, 3, c, 40).

  1. Construct a scatterplot for these data.
  2. Does it appear that a second-order model might better explain the variation in demand than a first-order model? Explain.
  3. Fit a first-order model to these data.
  4. Fit a second-order model to these data.
  5. Compare the results in parts c and d and decide which model better explains variation in demand. Justify your choice.

Going for it on fourth down in the NFL. Refer to the Chance (Winter 2009) study of fourth-down decisions by coaches in the National Football League (NFL), Exercise 11.69 (p. 679). Recall that statisticians at California State University, Northridge, fit a straight-line model for predicting the number of points scored (y) by a team that has a first-down with a given number of yards (x) from the opposing goal line. A second model fit to data collected on five NFL teams from a recent season was the quadratic regression model, E(y)=β0+β1x+β2x2.The regression yielded the following results: y=6.13+0.141x-0.0009x2,R2=0.226.

a) If possible, give a practical interpretation of each of the b estimates in the model.

b) Give a practical interpretation of the coefficient of determination,R2.

c) In Exercise 11.63, the coefficient of correlation for the straight-line model was reported asR2=0.18. Does this statistic alone indicate that the quadratic model is a better fit than the straight-line model? Explain.

d) What test of hypothesis would you conduct to determine if the quadratic model is a better fit than the straight-line model?

Suppose you used Minitab to fit the model y=β0+β1x1+β2x2+ε

to n = 15 data points and obtained the printout shown below.

  1. What is the least squares prediction equation?

  2. Find R2and interpret its value.

  3. Is there sufficient evidence to indicate that the model is useful for predicting y? Conduct an F-test using α = .05.

  4. Test the null hypothesis H0: β1= 0 against the alternative hypothesis Ha: β1≠ 0. Test using α = .05. Draw the appropriate conclusions.

  5. Find the standard deviation of the regression model and interpret it.

Question: Bus Rapid Transit study. Bus Rapid Transit (BRT) is a rapidly growing trend in the provision of public transportation in America. The Center for Urban Transportation Research (CUTR) at the University of South Florida conducted a survey of BRT customers in Miami (Transportation Research Board Annual Meeting, January 2003). Data on the following variables (all measured on a 5-point scale, where 1 = very unsatisfied and 5 = very satisfied) were collected for a sample of over 500 bus riders: overall satisfaction with BRT (y), safety on bus (x1), seat availability (x2), dependability (x3), travel time (x4), cost (x5), information/maps (x6), convenience of routes (x7), traffic signals (x8), safety at bus stops (x9), hours of service (x10), and frequency of service (x11). CUTR analysts used stepwise regression to model overall satisfaction (y).

a. How many models are fit at step 1 of the stepwise regression?

b. How many models are fit at step 2 of the stepwise regression?

c. How many models are fit at step 11 of the stepwise regression?

d. The stepwise regression selected the following eight variables to include in the model (in order of selection): x11, x4, x2, x7, x10, x1, x9, and x3. Write the equation for E(y) that results from stepwise regression.

e. The model, part d, resulted in R2 = 0.677. Interpret this value.

f. Explain why the CUTR analysts should be cautious in concluding that the best model for E(y) has been found.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free