Suppose you fit the regression model Ey=β0+β1x1+β2x2+β3x22+β4x1x2+β5x1x222 to n = 35 data points and wish to test the null hypothesis H0:β4=β5=0

  1. State the alternative hypothesis.

  2. Explain in detail how to compute the F-statistic needed to test the null hypothesis.

  3. What are the numerator and denominator degrees of freedom associated with the F-statistic in part b?

  4. Give the rejection region for the test if α = .05.

Short Answer

Expert verified
  1. The alternate hypothesis to test the significance of interaction terms would be Ha: At least one of the parameters β4or β5is nonzero.

  2. The F-statistic to check the goodness of fit of the model can be computed by F test statistic =SSEn-(k+1).

  3. In part b, the degrees of freedom for numerator is (n-k) while the degree of freedom for denominator is [n-(k+1)].

  4. When α = 0.05, the rejection region for the significance of interaction terms can be defined when the t-statistic < t0.025, n-1.

Step by step solution

01

Alternate hypothesis

The alternate hypothesis to test the significance of interaction terms would be Ha: At least one of the parameters β4 or β5 is nonzero.

02

F-statistic

The F-statistic to check the goodness of fit of the model can be computed by F test statistic = SSE.n-(k+1)

03

Degrees of freedom

In part b, the degrees of freedom for numerator is (n-k) while the degree of freedom for denominator is [n-(k+1)].

04

Rejection region


When α = 0.05, the rejection region for the significance of interaction terms can be defined when the t-statistic < t0.025, n-1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Job performance under time pressure. Refer to the Academy of Management Journal (October 2015) study of how time pressure affects team job performance, Exercise 12.89 (p. 765). Recall that the researchers hypothesized a complete second-order model relating team performance (y) to perceived time pressure (x1), and whether or not the team had an effective leader (x2 = 1 if yes, 0 if no):

E(Y)=β0+β1x1+β2x22+β3x2+β4x1x2+β5x12x2

a) How would you determine whether the rate of increase of team performance with time pressure depends on effectiveness of the team leader?

b) For fixed time pressure, how would you determine whether the mean team performance differs for teams with effective and non-effective team leaders?

Accuracy of software effort estimates. Refer to the Journal of Empirical Software Engineering (Vol. 9, 2004) study of the accuracy of new software effort estimates, Exercise 12.114 (p. 781). Recall that stepwise regression was used to develop a model for the relative error in estimating effort (y) as a function of company role of estimator (x1 = 1 if developer, 0 if project leader) and previous accuracy (x8 = 1 if more than 20% accurate, 0 if less than 20% accurate). The stepwise regression yielded the prediction equation y^= 0.12 - 0.28x1+ 0.27x8. The researcher is concerned that the sign of the estimated β multiplied by x1 is the opposite from what is expected. (The researcher expects a project leader to have a smaller relative error of estimation than a developer.) Give at least one reason why this phenomenon occurred.

Cooling method for gas turbines. Refer to the Journal of Engineering for Gas Turbines and Power (January 2005) study of a high-pressure inlet fogging method for a gas turbine engine, Exercise 12.19 (p. 726). Recall that you fit a first-order model for heat rate (y) as a function of speed (x1) , inlet temperature (x2) , exhaust temperature (x3) , cycle pressure ratio (x4) , and airflow rate (x5) . A Minitab printout with both a 95% confidence interval for E(y) and prediction interval for y for selected values of the x’s is shown below.

a. Interpret the 95% prediction interval for y in the words of the problem.

b. Interpret the 95% confidence interval forE(y)in the words of the problem.

c. Will the confidence interval for E(y) always be narrower than the prediction interval for y? Explain.

Consider the following data that fit the quadratic modelE(y)=β0+β1x+β2x2:

a. Construct a scatterplot for this data. Give the prediction equation and calculate R2based on the model above.

b. Interpret the value ofR2.

c. Justify whether the overall model is significant at the 1% significance level if the data result into a p-value of 0.000514.

Goal congruence in top management teams. Do chief executive officers (CEOs) and their top managers always agree on the goals of the company? Goal importance congruence between CEOs and vice presidents (VPs) was studied in the Academy of Management Journal (Feb. 2008). The researchers used regression to model a VP’s attitude toward the goal of improving efficiency (y) as a function of the two quantitative independent variables level of CEO (x1)leadership and level of congruence between the CEO and the VP (x2). A complete second-order model in x1and x2was fit to data collected for n = 517 top management team members at U.S. credit unions.

a. Write the complete second-order model for E(y).

b. The coefficient of determination for the model, part a, was reported asR2=0.14. Interpret this value.

c. The estimate of theβ-value for the(x2)2term in the model was found to be negative. Interpret this result, practically.

d. A t-test on theβ-value for the interaction term in the model,x1x2, resulted in a p-value of 0.02. Practically interpret this result, usingα=0.05.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free