Minitab was used to fit the complete second-order modeE(y)=β0+β1x1+β2x2+β3x1x2+β4x12+β5x22to n = 39 data points. The printout is shown on the next page.

a. Is there sufficient evidence to indicate that at least one of the parameters—β1,β2,β3,β4, andβ1,β2,β3,β4—is nonzero? Test usingα=0.05.

b. TestH0:β4=0againstHa:β40. Useα=0.01.

c. TestH0:β5=0againstHa:β50. Useα=0.01.

d. Use graphs to explain the consequences of the tests in parts b and c.

Short Answer

Expert verified

a. At 95% significance level, it can be concluded β1=β2=β3=β4=β5=0.

b. At 99% significance level, it can be concluded that β4=0.

c. At 99% significance level, it can be concluded that β5=0.

d. A straight line can be drawn relating y to x1holding x2constant or the other way round.

Step by step solution

01

Goodness of fit

H0:β1=β2=β3=β4=β5=0

Ha:at least one of the parameters β1, β2, β3,β4 andβ5 are non-zero.

Here, F test statistic =SSEn-K+1=251.8134=7.406

H0is rejected if F – statistics < F0.05,34,34. For α=0.05, since 7.406 > 1.843.

Not sufficient evidence to rejectH0 at 95% confidence interval.

Therefore,β1=β2=β3=β4=β5=0

02

Significance of β4

H0:β4=0Ha:β40

Here, t-test statistic=β^4sβ^4=-0.00430.0004=-10.75

Value oft0.005,34is 2.728

H0is rejected if t statistic > t0.005,34. For α=0.01, since t <t0.05,199

Not sufficient evidence to rejectH0 at a 95% confidence interval.

Thus,β4=0

03

Significance of β5

H0:β5=0Ha:β50

Here, t-test statistic=β^5sβ^5=0.00200.0033=0.6060

Value oft0.05,34is 2.728

H0is rejected if t statistic > t0.005,34. For α=0.01, since t <t0.005,34

Not sufficient evidence to reject at a 95% confidence interval.

So, β5=0.

04

Interpretation for second-order model

Since, the value ofβ4=0andβ5=0at 99% confidence level, this means that the parabola does not have a curvature and it essentially is a straight line.

Here, a straight line can be drawn relating y toholdingx2constant or the other way round.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose you fit the model y =β0+β1x1+β1x22+β3x2+β4x1x2+εto n = 25 data points with the following results:

β^0=1.26,β^1= -2.43,β^2=0.05,β^3=0.62,β^4=1.81sβ^1=1.21,sβ^2=0.16,sβ^3=0.26, sβ^4=1.49SSE=0.41 and R2=0.83

  1. Is there sufficient evidence to conclude that at least one of the parameters b1, b2, b3, or b4 is nonzero? Test using a = .05.

  2. Test H0: β1 = 0 against Ha: β1 < 0. Use α = .05.

  3. Test H0: β2 = 0 against Ha: β2 > 0. Use α = .05.

  4. Test H0: β3 = 0 against Ha: β3 ≠ 0. Use α = .05.

Question: Suppose the mean value E(y) of a response y is related to the quantitative independent variables x1and x2

E(y)=2+x1-3x2-x1x2

a. Identify and interpret the slope forx2.

b. Plot the linear relationship between E(y) andx2forx1=0,1,2, where.

c. How would you interpret the estimated slopes?

d. Use the lines you plotted in part b to determine the changes in E(y) for each x1=0,1,2.

e. Use your graph from part b to determine how much E(y) changes when3x15and1x23.

Question: Suppose you fit the interaction model y=β0+β1x1+β2x2+β3x1x2+ε to n = 32 data points and obtain the following results:SSyy=479,SSE=21,β^3=10, and sβ^3=4

a. Find R2and interpret its value.

b. Is the model adequate for predicting y? Test at α=.05

c. Use a graph to explain the contribution of the x1 , x2 term to the model.

d. Is there evidence that x1and x2 interact? Test at α=.05 .

Question: Predicting elements in aluminum alloys. Aluminum scraps that are recycled into alloys are classified into three categories: soft-drink cans, pots and pans, and automobile crank chambers. A study of how these three materials affect the metal elements present in aluminum alloys was published in Advances in Applied Physics (Vol. 1, 2013). Data on 126 production runs at an aluminum plant were used to model the percentage (y) of various elements (e.g., silver, boron, iron) that make up the aluminum alloy. Three independent variables were used in the model: x1 = proportion of aluminum scraps from cans, x2 = proportion of aluminum scraps from pots/pans, and x3 = proportion of aluminum scraps from crank chambers. The first-order model, , was fit to the data for several elements. The estimates of the model parameters (p-values in parentheses) for silver and iron are shown in the accompanying table.

(A) Is the overall model statistically useful (at α = .05) for predicting the percentage of silver in the alloy? If so, give a practical interpretation of R2.

(b)Is the overall model statistically useful (at a = .05) for predicting the percentage of iron in the alloy? If so, give a practical interpretation of R2.

(c)Based on the parameter estimates, sketch the relationship between percentage of silver (y) and proportion of aluminum scraps from cans (x1). Conduct a test to determine if this relationship is statistically significant at α = .05.

(d)Based on the parameter estimates, sketch the relationship between percentage of iron (y) and proportion of aluminum scraps from cans (x1). Conduct a test to determine if this relationship is statistically significant at α = .05.

The Minitab printout below was obtained from fitting the modely=β0+β1x1+β2x2+β3x1x2+εto n = 15 data points.

a) What is the prediction equation?

b) Give an estimate of the slope of the line relating y to x1 when x2 =10 .

c) Plot the prediction equation for the case when x2 =1 . Do this twice more on the same graph for the cases when x2 =3 and x2 =5 .

d) Explain what it means to say that x1and x2interact. Explain why your graph of part c suggests that x1and x2interact.

e) Specify the null and alternative hypotheses you would use to test whetherx1andx2interact.

f)Conduct the hypothesis test of part e using α=0.01.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free