Chapter 3: Problem 31
A solution of particles A and B has a Gibbs free energy $$ \begin{aligned} G\left(P, T, \mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}\right)=& \mathrm{n}_{\mathrm{A}} g_{\mathrm{A}}(P, T)+\mathrm{n}_{\mathrm{B}} g_{\mathrm{B}}(P, T)+\frac{1}{2} \lambda_{\mathrm{AA}} \frac{\mathrm{n}_{\mathrm{A}}^{2}}{\mathrm{n}}+\frac{1}{2} \lambda_{\mathrm{BB}} \frac{\mathrm{n}_{\mathrm{B}}^{2}}{\mathrm{n}} \\ &+\lambda_{\mathrm{AB}} \frac{\mathrm{n}_{\mathrm{A}} \mathrm{n}_{\mathrm{B}}}{\mathrm{n}}+\mathrm{n}_{\mathrm{A}} R T \ln x_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}} R T \ln x_{\mathrm{B}} \end{aligned} $$ Initially, the solution has \(\mathrm{n}_{\mathrm{A}}\) moles of A and \(\mathrm{n}_{\mathrm{B}}\) moles of B. (a) If an amount \(\Delta \mathrm{n}_{\mathrm{B} \text {, of } \mathrm{B} \text { is added }}\) keeping the pressure and temperature fixed, what is the change in the chemical potential of A? (b) For the case \(\lambda_{\mathrm{AA}}=\lambda_{\mathrm{BB}}=\lambda_{\mathrm{AB} \text {, }}\) does the chemical potential of A increase or decrease?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.