A mixture of particles A and B have a molar Gibbs free energy of the form
$$
g=x_{\mathrm{A}} \mu_{\mathrm{A}}^{\circ}(P, T)+x_{\mathrm{B}}
\mu_{\mathrm{B}}^{\circ}(P, T)+R T x_{\mathrm{A}} \ln x_{\mathrm{A}}+R T
x_{\mathrm{B}} \ln x_{\mathrm{B}}+\lambda x_{\mathrm{A}} x_{\mathrm{B}}
$$
where \(\mu_{\mathrm{A}}^{\circ}(P, T)\) and \(\mu_{\mathrm{B}}^{\circ}(P, T)\)
are the chemical potentials of pure A and pure B, respectively, at pressure
\(P\) and temperature \(T, R\) is the gas constant, \(x_{A}\) and \(x_{\mathrm{B}}\)
are the mole fractions of A and B, respectively, and \(\lambda\) measures the
strength of coupling between \(\mathrm{A}\) and \(\mathrm{B}\). In terms of
dimensionless parameters, \(\bar{g}=g / \lambda, \bar{\mu}_{A}^{\circ}(P,
T)=\mu_{\mathrm{A}}^{\circ}(P, T) / \lambda, \bar{\mu}_{\mathrm{B}}^{0}(P,
T)=\mu_{\mathrm{B}}^{0}(P, T) / \lambda\), and \(\tau=R T / \lambda\), the molar
Gibbs free energy takes the form.
$$
\bar{g}=x_{\mathrm{A}} \bar{\mu}_{\mathrm{A}}^{\circ}(P, T)+x_{\mathrm{B}}
\bar{\mu}_{\mathrm{B}}^{\circ}(P, T)+\tau x_{\mathrm{A}} \ln
x_{\mathrm{A}}+\tau x_{\mathrm{B}} \ln x_{\mathrm{B}}+x_{\mathrm{A}}
x_{\mathrm{B}}
$$
Assume that \(\overline{\mu_{\mathrm{B}}}=0.45\) and
\(\bar{\mu}_{\mathrm{A}}=0.40\).
(a) Find the critical temperature \(\tau_{c}\) at which phase separation occurs
and plot the curve separating the chemically stable from unstable regions in
the \(\tau-x_{\mathrm{A}}\) plane.
(b) For \(\tau=1 / 2.6\), find equilibrium values of \(x_{\mathrm{A}}\) on the
coexistence curve.
(c) For \(\tau=1 / 3.6\), find equilibrium values of \(x_{\mathrm{A}}\) on the
coexistence curve.
(d) On the same plot as in (a), plot (sketch) the coexistence curve. You can
estimate its location based on your results in (b) and (c).