Chapter 7: Problem 11
Prove that $$ \langle\alpha(t)\rangle=2 \mathrm{i} \int_{-\infty}^{t} \mathrm{~d} t^{\prime} \bar{K}^{\prime \prime}\left(t-t^{\prime}\right) \cdot \bar{F}\left(t^{\prime}\right) $$ where \(\bar{K}^{\prime \prime}(t)\) is the Fourier transform of \(\bar{X}^{\prime \prime}(\omega) .\) This form of the linear response is commonly seen in the literature. [Note that the identity $$ \lim _{\eta \rightarrow 0} \frac{1}{\omega^{\prime}-\omega \mp \mathrm{i} \eta}=P \frac{1}{\omega^{\prime}-\omega} \pm \mathrm{i} \pi \delta\left(\omega^{\prime}-\omega\right) $$ and the spectral representation of the Heaviside function $$ \theta\left(t-t^{\prime}\right)=-\lim _{\eta \rightarrow 0} \int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{(2 \pi \mathrm{i})} \frac{\mathrm{e}^{-\mathrm{i} \omega\left(t-t^{\prime}\right)}}{\omega+i \eta} $$ are useful.]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.