(a) Find the electric field at\(x = 5.00{\rm{ cm}}\)in Figure 18.52 (a), given that\(q = 1.00{\rm{ }}\mu C\). (b) At what position between\(3.00\)and\(8.00{\rm{ cm}}\)is the total electric field the same as that for\( - 2q\)alone? (c) Can the electric field be zero anywhere between\(0.00\)and\(8.00{\rm{ cm}}\)? (d) At very large positive or negative values of\(x\), the electric field approaches zero in both (a) and (b). In which does it most rapidly approach zero and why? (e) At what position to the right of\(11.0{\rm{ cm}}\)is the total electric field zero, other than at infinity? (Hint: A graphing calculator can yield considerable insight in this problem.)

Figure 18.52 (a) Point charges located at\[{\bf{3}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{11}}.{\bf{0}}{\rm{ }}{\bf{cm}}\]along the x-axis. (b) Point charges located at\[{\bf{1}}.{\bf{00}},{\rm{ }}{\bf{5}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{14}}.{\bf{0}}{\rm{ }}{\bf{cm}}\]along the x-axis

Short Answer

Expert verified

(a) The electric field at \(x = 5.00{\rm{ cm}}\) is \(4.0 \times {10^7}{\rm{ N}}/{\rm{C}}\). (b) The electric field at \(x = 7.00{\rm{ cm}}\) will be same for the \( - 2q\) alone. (c) No, the electric field cannot be zero anywhere between \(0.00\) and \(8.00{\rm{ cm}}\). (d) In Figure 18.52 (a) the electric field rapidly approach zero. (e) The total electric field is zero at \(30.607{\rm{ cm}}\).

Step by step solution

01

Electric field

The region around a charge in which the effect of the charge can be observed is known as electric field.The expression for the electric field is,

\(E = \frac{{Kq}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant, \(q\) is the charge and \(r\) is the distance of the point of observation from the charge.

02

(a) Electric field at x=5.00 cm

The electric field for Figure 18.52 at \(x = {\rm{5}}{\rm{.00 cm}}\) is represented as,

Electric field at\(x = 5.00{\rm{ cm}}\)

The electric field at\(x = 5.00{\rm{ cm}}\)is,

\(\begin{array}{c}E = {E_3} + {E_8} - {E_{11}}\\ = \frac{{K\left( q \right)}}{{{{\left| {{r_5} - {r_3}} \right|}^2}}} + \frac{{K\left( {2q} \right)}}{{{{\left| {{r_5} - {r_8}} \right|}^2}}} - \frac{{K\left( q \right)}}{{{{\left| {{r_5} - {r_{11}}} \right|}^2}}}\\ = K\left[ {\frac{{\left( q \right)}}{{{{\left| {{r_5} - {r_3}} \right|}^2}}} + \frac{{\left( {2q} \right)}}{{{{\left| {{r_5} - {r_8}} \right|}^2}}} - \frac{{\left( q \right)}}{{{{\left| {{r_5} - {r_{11}}} \right|}^2}}}} \right]\end{array}\)

Here, \(K\) is the electrostatic force constant, \(q\) is the charge, \(\left| {{r_5} - {r_3}} \right|\) is the distance between \(x = 5.00{\rm{ cm}}\) and the charge at \[x = 3.00{\rm{ cm}}\], \(\left| {{r_5} - {r_8}} \right|\) is the distance between \(x = 5.00{\rm{ cm}}\) and the charge at \(x = 8.00{\rm{ cm}}\), and \(\left| {{r_5} - {r_{11}}} \right|\) is the distance between \(x = 5.00{\rm{ cm}}\) and the charge at \(x = 11.00{\rm{ cm}}\).

Substitute \({\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}\) for \(K\), \(1.00{\rm{ }}\mu {\rm{C}}\) for \(q\)a, \(3.00{\rm{ cm}}\) for \({r_3}\), \(5.00{\rm{ cm}}\) for \({r_5}\), \(8.00{\rm{ cm}}\) for \({r_8}\), and \(11.00{\rm{ cm}}\) for \({r_{11}}\).

\(\begin{array}{c}E = \left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}} \right) \times \left[ \begin{array}{l}\frac{{\left( {{\rm{1}}{\rm{.00 \mu C}}} \right)}}{{{{\left| {\left( {{\rm{5}}{\rm{.00 cm}}} \right) - \left( {{\rm{3}}{\rm{.00 cm}}} \right)} \right|}^{\rm{2}}}}} + \frac{{{\rm{2 \times }}\left( {{\rm{1}}{\rm{.00 \mu C}}} \right)}}{{{{\left| {\left( {{\rm{5}}{\rm{.00 cm}}} \right) - \left( {{\rm{8}}{\rm{.00 cm}}} \right)} \right|}^{\rm{2}}}}}\\ - \frac{{\left( {{\rm{1}}{\rm{.00 \mu C}}} \right)}}{{{{\left| {\left( {{\rm{5}}{\rm{.00 cm}}} \right) - \left( {{\rm{11}}{\rm{.00 cm}}} \right)} \right|}^{\rm{2}}}}}\end{array} \right]\\ = \left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}} \right) \times \left[ \begin{array}{l}\frac{{\left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left| {\left( {{\rm{2}}{\rm{.00 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right|}^{\rm{2}}}}} + \frac{{{\rm{2}} \times \left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left| {\left( {{\rm{3}}{\rm{.00 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right|}^{\rm{2}}}}}\\ - \frac{{\left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left| {\left( {{\rm{6}}{\rm{.00 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right|}^{\rm{2}}}}}\end{array} \right]\\ = {\rm{4}}{\rm{.00 \times 1}}{{\rm{0}}^{\rm{7}}}{\rm{ N}}/{\rm{C}}\end{array}\)

Hence, the electric field at \(x = 5.00{\rm{ cm}}\) is \(4.0 \times {10^7}{\rm{ N}}/{\rm{C}}\).

03

(b) Point where the total electric field is same as that for -2q alone

Let \(x\) be the point between \(3.00\) and \(8.00{\rm{ cm}}\) where the total electric field be the same for \( - 2q\) alone i.e, \(E = {E_8}\).

The electric field at \(x\) is represented as,

Electric field at \(x\)

The electric field at \(x\) is,

\[\begin{array}{c}E = {E_3} + {E_8} - {E_{11}}\\{E_8} = \frac{{K\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} + \frac{{K\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} - \frac{{K\left( q \right)}}{{{{\left( {{r_{11}} - x} \right)}^2}}}\\\frac{{K\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} = K\left[ {\frac{{\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} + \frac{{\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} - \frac{{\left( q \right)}}{{{{\left( {{r_{11}} - x} \right)}^2}}}} \right]\\\frac{{K\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} = \frac{{\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} + \frac{{\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} - \frac{{\left( q \right)}}{{{{\left( {{r_{11}} - x} \right)}^2}}}\end{array}\]

Here, \(K\) is the electrostatic force constant, \(q\) is the charge, \(\left( {x - {r_3}} \right)\) is the distance between \(x\) and the charge at \(x = {\rm{3}}{\rm{.00 cm}}\), \(\left( {{r_8} - x} \right)\) is the distance between \(x\) and the charge at \(x = 8.00{\rm{ cm}}\), and \(\left( {{r_{11}} - x} \right)\) is the distance between \(x\) and the charge at \(x = {\rm{11}}{\rm{.00 cm}}\).

Substitute \({\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}\) for \(K\), \[1.00{\rm{ }}\mu {\rm{C}}\] for \(q\), \(3.00{\rm{ cm}}\) for \({r_3}\), \[5.00 cm\] for \({r_5}\), \(8.00{\rm{ cm}}\) for \[{r_8}\], and \(11.00{\rm{ cm}}\) for \({r_{11}}\).

\[\begin{array}{c}\frac{{2 \times \left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {8.00{\rm{ cm}}} \right) - x} \right]}^2}}} = \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {x - \left( {3.00{\rm{ cm}}} \right)} \right]}^2}}} + \frac{{2 \times \left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {8.00{\rm{ cm}}} \right) - x} \right]}^2}}} - \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {11.00{\rm{ cm}}} \right) - x} \right]}^2}}}\\0 = \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {x - \left( {3.00{\rm{ cm}}} \right)} \right]}^2}}} - \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {11.00{\rm{ cm}}} \right) - x} \right]}^2}}}\\\frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {x - \left( {3.00{\rm{ cm}}} \right)} \right]}^2}}} = \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {11.00{\rm{ cm}}} \right) - x} \right]}^2}}}\\{\left[ {x - \left( {3.00{\rm{ cm}}} \right)} \right]^2} = {\left[ {\left( {11.00{\rm{ cm}}} \right) - x} \right]^2}\end{array}\]

Taking square root both sides,

\[\begin{array}{c}x - \left( {{\rm{3}}{\rm{.00 cm}}} \right) = \left( {{\rm{11}}{\rm{.00 cm}}} \right) - x\\{\rm{2}}x = \left( {{\rm{11}}{\rm{.00 cm}}} \right) + \left( {{\rm{3}}{\rm{.00 cm}}} \right)\\{\rm{2}}x = {\rm{14}}{\rm{.00 cm}}\\x = {\rm{7}}{\rm{.00 cm}}\end{array}\]\[\]

Hence, the electric field at \(x = {\rm{7}}{\rm{.00 cm}}\) will be same for the \( - 2q\) alone.

04

(c) Place between 0.00 and 8.00 cm where the electric field is zero

Since, the field is uniform. Hence, there would be not point between \(0.00\) and \(8.00{\rm{ cm}}\) where the electric field is zero.

05

(d) Electric field rapidly approaches zero

At very large positive or negative values of \(x\), the electric field approaches zero because the distance from the charges approaches infinity.

Since, the net charge in Figure 18.52 (a) is zero. Thus, the electric field approaches zero more rapidly.

06

(e) Point on right of 11.00 cm where the electric field is zero

Let at \(x\), right of \(11.00{\rm{ cm}}\) electric field be zero.

The electric field at \(x\) is represented as,

Electric field at \(x\)

The electric field at \(x\) is,

\[\begin{array}{c}E = {E_3} - {E_8} + {E_{11}}\\ = \frac{{K\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} - \frac{{K\left( {2q} \right)}}{{{{\left( {x - {r_8}} \right)}^2}}} + \frac{{K\left( q \right)}}{{{{\left( {x - {r_{11}}} \right)}^2}}}\\ = K\left[ {\frac{{\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} - \frac{{\left( {2q} \right)}}{{{{\left( {x - {r_8}} \right)}^2}}} + \frac{{\left( q \right)}}{{{{\left( {x - {r_{11}}} \right)}^2}}}} \right]\end{array}\]

Here, \(K\) is the electrostatic force constant, \(q\) is the charge, \(\left( {x - {r_3}} \right)\) is the distance between \(x\) and the charge at \(x = {\rm{3}}{\rm{.00 cm}}\), \(\left( {x - {r_8}} \right)\) is the distance between \(x\) and the charge at \(x = {\rm{8}}{\rm{.00 cm}}\), and \(\left( {x - {r_{11}}} \right)\) is the distance between \(x\) and the charge at \(x = 11.00{\rm{ cm}}\).

Since, the total electric field is zero. Therefore,

\(\begin{array}{c}E = K\left[ {\frac{{\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} - \frac{{\left( {2q} \right)}}{{{{\left( {x - {r_8}} \right)}^2}}} + \frac{{\left( q \right)}}{{{{\left( {x - {r_{11}}} \right)}^2}}}} \right]\\\frac{E}{{Kq}} = \frac{1}{{{{\left( {x - {r_3}} \right)}^2}}} - \frac{2}{{{{\left( {x - {r_8}} \right)}^2}}} + \frac{1}{{{{\left( {x - {r_{11}}} \right)}^2}}}\end{array}\)

Substitute \[3.00{\rm{ cm}}\] for \({r_3}\), \(5.00{\rm{ cm}}\) for \[{r_5}\], \(8.00{\rm{ cm}}\) for \({r_8}\), and \(11.00{\rm{ cm}}\) for \({r_{11}}\).

\[\frac{E}{{Kq}} = \frac{{\rm{1}}}{{{{\left[ {x - \left( {{\rm{3}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}} - \frac{{\rm{2}}}{{{{\left[ {x - \left( {{\rm{8}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\left[ {x - \left( {{\rm{11}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}}\]

Plotting this polynomial,

Plot for \(\frac{E}{{Kq}}\) vs \[x\]

From graph, it is clear that the electric field is zero \(x = {\rm{5}}{\rm{.148 cm}}\), \(x = {\rm{9}}{\rm{.745 cm}}\), and \(x = {\rm{30}}{\rm{.607 cm}}\).

Hence, the position right to the point \(x = {\rm{11}}{\rm{.00 cm}}\) where the electric field is zero is \(30.607{\rm{ cm}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using the symmetry of the arrangement, determine the direction of the force on\(q\)in the figure below, given that\({q_a} = {q_b} = + 7.50{\rm{ }}\mu {\rm{C}}\)and\({q_c} = {q_d} = - 7.50{\rm{ }}\mu {\rm{C}}\). (b) Calculate the magnitude of the force on the charge\(q\), given that the square is\(10.0{\rm{ cm}}\)on a side and\(q = {\rm{2}}{\rm{.00 }}\mu {\rm{C}}\).

Suppose a woman carries an excess charge. To maintain her charged status can she be standing on ground wearing just any pair of shoes? How would you discharge her? What are the consequences if she simply walks away?

Compare and contrast the Coulomb force field and the electric field. To do this, make a list of five properties for the Coulomb force field analogous to the five properties listed for electric field lines. Compare each item in your list of Coulomb force field properties with those of the electric field—are they the same or different? (For example, electric field lines cannot cross. Is the same true for Coulomb field lines?)

Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance between the centers of the balls. Construct a problem in which you calculate the electric field (magnitude and direction) due to the balls at various points along a line running through the centers of the balls and extending to infinity on either side. Choose interesting points and comment on the meaning of the field at those points. For example, at what points might the field be just that due to one ball and where does the field become negligibly small? Among the things to be considered are the magnitudes of the charges and the distance between the centers of the balls. Your instructor may wish for you to consider the electric field off axis or for a more complex array of charges, such as those in a water molecule.

Find the electric field at the location of \({q_a}\) in Figure 18.53 given that \({q_b} = {q_c} = {q_d} = + 2.00{\rm{ nC}}\), \(q = - 1.00{\rm{ nC}}\), and the square is \({\rm{20}}{\rm{.0 cm}}\) on a side.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free