Using the symmetry of the arrangement, determine the direction of the force on\(q\)in the figure below, given that\({q_a} = {q_b} = + 7.50{\rm{ }}\mu {\rm{C}}\)and\({q_c} = {q_d} = - 7.50{\rm{ }}\mu {\rm{C}}\). (b) Calculate the magnitude of the force on the charge\(q\), given that the square is\(10.0{\rm{ cm}}\)on a side and\(q = {\rm{2}}{\rm{.00 }}\mu {\rm{C}}\).

Short Answer

Expert verified

(a) The direction of the force on \(q\) is straight downward.

(b) The magnitude of the net force on the charge \(q\) is \(76.37{\rm{ N}}\).

Step by step solution

01

Net electrostatic force

Electrostatic force is a vector quantity. When two charges are separated by some distance the electrostatic force between them is given as,

\(F = \frac{{KQq}}{{{r^2}}}\)

Here, \(K\)is the electrostatic force constant.

The net electrostatic force on the charge will be the vector sum of the individual charge.

02

(a) Direction of the force

Due to symmetry the net force on \(q\) will be straight down, since \({q_a}\) and \({q_b}\) are positive and \({q_c}\) and \({q_d}\) are negative with same magnitude. \({q_a}\) and \({q_b}\) will force the charge straight downward and \({q_c}\) and \({q_d}\) will pull the charge straight downward.

Hence, the direction of the force on \(q\) is straight downward.

03

(b) Magnitude of the force

The force on the charge \(q\) is represented as,

Force on the charge \(q\)

Here, \({F_a}\) is the repulsive force on charge \(q\) due to \({q_a}\), \({F_b}\) is the repulsive force on charge \(q\) due to \({q_b}\), \({F_c}\) is the attractive force on charge \(q\) due to \({q_c}\), and \({F_d}\) is the attractive force on charge \(q\) due to \({q_d}\).

04

Calculating the distance

The distance of charge \(q\) from the charges \({q_a}\), \({q_b}\), \({q_c}\) and \({q_d}\) is,

\(r = \frac{a}{{\sqrt 2 }}\)

Here, \(a\) is the side of the square \(\left( {a = 10.0{\rm{ }}cm} \right)\).

Substituting all known values,

\(\begin{array}{c}r = \frac{{10.0{\rm{ cm}}}}{{\sqrt 2 }}\\ = 7.07{\rm{ cm}}\end{array}\)

05

Calculating the magnitude of attractive and repulsive force

The magnitude of the repulsive force on charge \(q\) due to \({q_a}\) is,

\({F_a} = \frac{{Kq{q_a}}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant \(\left( {K = {\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\), \(q\) is the magnitude of the charge at the center of the square \(\left( {q = 2.00{\rm{ }}\mu {\rm{C}}} \right)\), \({q_a}\) is the magnitude of the charge at the edge of the square \(\left( {{q_a} = 7.50{\rm{ }}\mu {\rm{C}}} \right)\), and \(r\) is the distance between \(q\) and \({q_a}\) \(\left( {r = 7.07{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{F_a} = \frac{{\left( {{\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{2}}{\rm{.00 \mu C}}} \right) \times \left( {{\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right)}}{{{{\left( {{\rm{7}}{\rm{.07 cm}}} \right)}^{\rm{2}}}}}\\ = \frac{{\left( {{\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{2}}{\rm{.00 }}\mu {\rm{C}}} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1{\rm{ }}\mu {\rm{C}}}}} \right) \times \left( {{\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1{\rm{ }}\mu {\rm{C}}}}} \right)}}{{{{\left[ {\left( {{\rm{7}}{\rm{.07 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\ = {\rm{27 N}}\end{array}\)

The magnitude of the repulsive force on charge \(q\) due to \({q_b}\) is,

\({F_b} = \frac{{Kq{q_b}}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant \(\left( {K = {\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\), \(q\) is the magnitude of the charge at the center of the square \(\left( {q = 2.00{\rm{ }}\mu {\rm{C}}} \right)\), \({q_b}\) is the magnitude of the charge at the edge of the square \(\left( {{q_b} = {\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right)\), and \(r\) is the distance between \(q\) and \({q_b}\) \(\left( {r = 7.07{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{F_b} &= \frac{{\left( {{\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{2}}{\rm{.00 }}\mu {\rm{C}}} \right) \times \left( {{\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right)}}{{{{\left( {{\rm{7}}{\rm{.07 cm}}} \right)}^{\rm{2}}}}}\\ &= \frac{{\left( {{\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N \times }}{{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{2}}{\rm{.00 }}\mu {\rm{C}}} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1{\rm{ }}\mu {\rm{C}}}}} \right) \times \left( {{\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1{\rm{ }}\mu {\rm{C}}}}} \right)}}{{{{\left[ {\left( {{\rm{7}}{\rm{.07 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\& = {\rm{27 N}}\end{array}\)

The magnitude of the attractive force on charge \(q\) due to \({q_c}\) is,

\({F_c} = \frac{{Kq{q_c}}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant \(\left( {K = {\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\), \(q\) is the magnitude of the charge at the center of the square \(\left( {q = 2.00{\rm{ }}\mu {\rm{C}}} \right)\), \({q_c}\) is the magnitude of the charge at the edge of the square \(\left( {{q_c} = {\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right)\), and \(r\) is the distance between \(q\) and \({q_c}\) \(\left( {r = 7.07{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{F_c} = \frac{{\left( {{\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{2}}{\rm{.00 }}\mu {\rm{C}}} \right) \times \left( {{\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right)}}{{{{\left( {{\rm{7}}{\rm{.07 cm}}} \right)}^{\rm{2}}}}}\\ = \frac{{\left( {{\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{2}}{\rm{.00 }}\mu {\rm{C}}} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1{\rm{ }}\mu {\rm{C}}}}} \right) \times \left( {{\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1{\rm{ }}\mu {\rm{C}}}}} \right)}}{{{{\left[ {\left( {{\rm{7}}{\rm{.07 cm}}} \right){\rm{ \times }}\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\{\rm{ = 27 N}}\end{array}\)

The magnitude of the attractive force on charge \(q\) due to \({q_d}\) is,

\({F_d} = \frac{{Kq{q_d}}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant \(\left( {K = {\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\), \(q\) is the magnitude of the charge at the center of the square \(\left( {q = 2.00{\rm{ }}\mu {\rm{C}}} \right)\), \({q_d}\) is the magnitude of the charge at the edge of the square \(\left( {{q_d} = {\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right)\), and \(r\) is the distance between \(q\) and \({q_d}\) \(\left( {r = 7.07{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{F_d} = \frac{{\left( {{\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{2}}{\rm{.00 }}\mu {\rm{C}}} \right) \times \left( {{\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right)}}{{{{\left( {{\rm{7}}{\rm{.07 cm}}} \right)}^{\rm{2}}}}}\\ = \frac{{\left( {{\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{2}}{\rm{.00 }}\mu {\rm{C}}} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1{\rm{ }}\mu {\rm{C}}}}} \right) \times \left( {{\rm{7}}{\rm{.50 }}\mu {\rm{C}}} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ C}}}}{{1{\rm{ }}\mu {\rm{C}}}}} \right)}}{{{{\left[ {\left( {{\rm{7}}{\rm{.07 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\ = {\rm{27 N}}\end{array}\)

06

Calculating the magnitude of net force

The force on the horizonal direction is,

\(\begin{array}{c}{F_x} = {F_a}\sin \left( {45^\circ } \right) - {F_b}\sin \left( {45^\circ } \right) - {F_c}\sin \left( {45^\circ } \right) + {F_d}\sin \left( {45^\circ } \right)\\ = \left( {{F_a} - {F_b} - {F_c} + {F_d}} \right) \times \sin \left( {45^\circ } \right)\end{array}\)

Substituting all known values,

\(\begin{array}{c}{F_x} = \left[ {\left( {{\rm{27 N}}} \right) - \left( {{\rm{27 N}}} \right) - \left( {{\rm{27 N}}} \right) + \left( {{\rm{27 N}}} \right)} \right] \times {\rm{sin}}\left( {{\rm{45^\circ }}} \right)\\ = 0\end{array}\)

The force on the vertical direction is,

\(\begin{array}{c}{F_y} = {F_a}\cos \left( {45^\circ } \right) + {F_b}\cos \left( {45^\circ } \right) + {F_c}\cos \left( {45^\circ } \right) + {F_d}\cos \left( {45^\circ } \right)\\ = \left( {{F_a} + {F_b} + {F_c} + {F_d}} \right) \times \cos \left( {45^\circ } \right)\end{array}\)

Substituting all known values,

\(\begin{array}{c}{F_y} = \left[ {\left( {{\rm{27 N}}} \right){\rm{ + }}\left( {{\rm{27 N}}} \right){\rm{ + }}\left( {{\rm{27 N}}} \right){\rm{ + }}\left( {{\rm{27 N}}} \right)} \right] \times {\rm{cos}}\left( {{\rm{45^\circ }}} \right)\\ = {\rm{76}}{\rm{.37 N}}\end{array}\)

The magnitude of net force on charge \(q\) is,

\(F = \sqrt {F_x^2 + F_y^2} \)

Substituting all known values,

\(\begin{array}{c}F = \sqrt {{{\left( {\rm{0}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {{\rm{76}}{\rm{.37 N}}} \right)}^{\rm{2}}}} \\ = {\rm{76}}{\rm{.37 N}}\end{array}\)\(\)

Hence, the magnitude of the net force on the charge \(q\) is \(76.37{\rm{ N}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 18.43 shows the charge distribution in a water molecule, which is called a polar molecule because it has an inherent separation of charge. Given water’s polar character, explain what effect humidity has on removing excess charge from objects.

Figure 18.43 Schematic representation of the outer electron cloud of a neutral water molecule. The electrons spend more time near the oxygen than the hydrogens, giving a permanent charge separation as shown. Water is thus a polar molecule. It is more easily affected by electrostatic forces than molecules with uniform charge distributions.

What is the magnitude and direction of the force exerted on a3.50μC charge by a 250 N/C electric field that points due east?

How far apart must two point charges of\({\rm{75}}{\rm{.0 nC}}\)(typical of static electricity) be to have a force of\({\rm{1}}{\rm{.00 N}}\)between them?

Sketch the electric field lines a long distance from the charge distributions shown in Figure 18.26 (a) and (b).

Figure 18.26 (a) Two negative charges produce the fields shown. It is very similar to the field produced by two positive charges, except that the directions are reversed. The field is clearly weaker between the charges. The individual forces on a test charge in that region are in opposite directions. (b) Two opposite charges produce the field shown, which is stronger in the region between the charges.

The practical limit to an electric field in air is about\(3.00 \times {10^6}{\rm{ N}}/{\rm{C}}\). Above this strength, sparking takes place because air begins to ionize and charges flow, reducing the field. (a) Calculate the distance a free proton must travel in this field to reach\(3.00\% \)of the speed of light, starting from rest. (b) Is this practical in air, or must it occur in a vacuum?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free