Find the electric field at the location of \({q_a}\) in Figure 18.53 given that \({q_b} = {q_c} = {q_d} = + 2.00{\rm{ nC}}\), \(q = - 1.00{\rm{ nC}}\), and the square is \({\rm{20}}{\rm{.0 cm}}\) on a side.

Short Answer

Expert verified

The electric field at the location of \({q_a}\) is \(411.4{\rm{ N/C}}\).

Step by step solution

01

Electric field

The electric field at point at a distance \(r\) from the charge \(q\) is,

\(E = \frac{{Kq}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant.

For a system of charges, the electric field at point can be determined by the vector sum of all the field acting at that point.

02

Electric field at the location

The electric field at the location of \({q_a}\) is represented as,

Electric field at the location of \({q_a}\)

Here, \(E\) is the net electric field, \({E_b}\) is the electric field due to charge \({q_b}\), \({E_c}\) is the electric field due to charge \({q_c}\), \({E_{bc}}\) is the resultant electric field of \({E_b}\) and \({E_c}\), \({E_q}\) is the electric field due to charge \(q\), and \({E_d}\) is the electric field due to charge \({q_d}\).

03

Calculating electric fields due to individual charge

The electric field due to charge \({q_b}\),

\({E_b} = \frac{{K{q_b}}}{{{a^2}}}\)

Here, \(K\) is the electrostatic force constant \[\left( {K = 9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\], \({q_b}\) is the magnitude of charge \(\left( {{q_b} = 2.00{\rm{ nC}}} \right)\), and a is the side of square \(\left( {a = 20.0{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{E_b} = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {2.00{\rm{ }}nC} \right)}}{{{{\left( {20.0{\rm{ }}cm} \right)}^2}}}\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {2.00{\rm{ }}nC} \right) \times \left( {\frac{{{{10}^{ - 9}}{\rm{ }}C}}{{1{\rm{ }}nC}}} \right)}}{{{{\left[ {\left( {20.0{\rm{ }}cm} \right) \times \left( {\frac{{{{10}^{ - 2}}{\rm{ }}m}}{{1{\rm{ }}cm}}} \right)} \right]}^2}}}\\ = 450{\rm{ N/C}}\end{array}\)

The electric field due to charge \({q_c}\),

\({E_c} = \frac{{K{q_c}}}{{{a^2}}}\)

Here, \(K\) is the electrostatic force constant \[\left( {K = 9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\], \({q_c}\) is the magnitude of charge \(\left( {{q_c} = 2.00{\rm{ nC}}} \right)\), and a is the side of square \(\left( {a = 20.0{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{E_c} = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {2.00{\rm{ }}nC} \right)}}{{{{\left( {20.0{\rm{ }}cm} \right)}^2}}}\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {2.00{\rm{ }}nC} \right) \times \left( {\frac{{{{10}^{ - 9}}{\rm{ }}C}}{{1{\rm{ }}nC}}} \right)}}{{{{\left[ {\left( {20.0{\rm{ }}cm} \right) \times \left( {\frac{{{{10}^{ - 2}}{\rm{ }}m}}{{1{\rm{ }}cm}}} \right)} \right]}^2}}}\\ = 450{\rm{ N/C}}\end{array}\)

The electric field due to charge \(q\),

\({E_q} = \frac{{Kq}}{{{{\left( {\frac{a}{{\sqrt 2 }}} \right)}^2}}}\)

Here, \(K\) is the electrostatic force constant \[\left( {K = 9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\], \({q_c}\) is the magnitude of charge \(\left( {q = 1.00{\rm{ nC}}} \right)\), and a is the side of square \(\left( {a = 20.0{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{E_q} = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {1.00{\rm{ }}nC} \right)}}{{{{\left( {\frac{{20.0{\rm{ }}cm}}{{\sqrt 2 }}} \right)}^2}}}\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {1.00{\rm{ }}nC} \right) \times \left( {\frac{{{{10}^{ - 9}}{\rm{ }}C}}{{1{\rm{ }}nC}}} \right)}}{{{{\left[ {{{\left( {\frac{{20.0{\rm{ }}cm}}{{\sqrt 2 }}} \right)}^2} \times \left( {\frac{{{{10}^{ - 2}}{\rm{ }}m}}{{1{\rm{ }}cm}}} \right)} \right]}^2}}}\\ = 450{\rm{ N/C}}\end{array}\)

The electric field due to charge \({q_d}\),

\({E_d} = \frac{{K{q_d}}}{{{{\left( {\sqrt 2 a} \right)}^2}}}\)

Here, \(K\) is the electrostatic force constant \[\left( {K = 9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\], \({q_d}\) is the magnitude of charge \(\left( {{q_d} = 2.00{\rm{ nC}}} \right)\), and a is the side of square \(\left( {a = 20.0{\rm{ cm}}} \right)\).

Substituting all known values,

\[\begin{array}{c}{E_d} = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {2.00{\rm{ }}nC} \right)}}{{{{\left( {\sqrt 2 \times 20.0{\rm{ }}cm} \right)}^2}}}\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {2.00{\rm{ }}nC} \right) \times \left( {\frac{{{{10}^{ - 9}}{\rm{ }}C}}{{1{\rm{ }}nC}}} \right)}}{{{{\left[ {\sqrt 2 \times \left( {20.0{\rm{ }}cm} \right) \times \left( {\frac{{{{10}^{ - 2}}{\rm{ }}m}}{{1{\rm{ }}cm}}} \right)} \right]}^2}}}\\ = 225{\rm{ N/C}}\end{array}\]

04

Calculating the resultant electric field

The resultant of electric fields \[{E_b}\] and \[{E_c}\] is,

\[{E_{bc}} = \sqrt {E_b^2 + E_c^2 + 2{E_b}{E_c}\cos \theta } \]

Here, \[\theta \] is the angle between the electric fields \[{E_b}\] and \[{E_c}\] \(\left( {\theta = {{90}^ \circ }} \right)\).

Substituting all known values,

\(\begin{array}{c}{E_{bc}} = \sqrt {{{\left( {450{\rm{ }}N} \right)}^2} + {{\left( {450{\rm{ }}N} \right)}^2} + 2 \times \left( {450{\rm{ }}N} \right) \times \left( {450{\rm{ }}N} \right) \times \cos \left( {90^\circ } \right)} \\ = 636.4{\rm{ N/C}}\end{array}\)

The net electric field at the location of \({q_a}\) is,

\(E = {E_{bc}} + {E_d} - {E_q}\)

Substituting all known values,

\(\begin{array}{c}E = \left( {636.4{\rm{ N/C}}} \right) + \left( {225{\rm{ N/C}}} \right) - \left( {450{\rm{ N/C}}} \right)\\ = 411.4{\rm{ N/C}}\end{array}\)

Hence, the electric field at the location of \({q_a}\) is \(411.4{\rm{ N/C}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free