(a) What is the approximate force of gravity on a\({\rm{70 - kg}}\)person due to the Andromeda galaxy, assuming its total mass is\({\rm{1}}{{\rm{0}}^{{\rm{13}}}}\)that of our Sun and acts like a single mass\({\rm{2 Mly}}\)away? (b) What is the ratio of this force to the person’s weight? Note that Andromeda is the closest large galaxy.

Short Answer

Expert verified

(a) The force on a person due to Andromeda galaxy is: \({\rm{2}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 10\;}}}}\,{\rm{N}}\).

(b) The ratio of the force is obtained as: \({\rm{3}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}\).

Step by step solution

01

Newton’s law of gravitation.

The force acting between two particles is given by Newton’s law of gravitation,

\(F = G\frac{{{m_1}{m_2}}}{{{r^2}}}\)

Here\(F\)is the force acting between two particles,\({m_1}\)and\({m_2}\)are the masses of the particle,\(G\)is the universal gravitational constant and\(r\)is the distance between the masses.

02

Evaluating the force

Using the Newton's gravitation force law as:

\(\begin{array}{}F & = G\frac{{Mm}}{{{r^2}}}\\ & = {\rm{6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{ - 11}}}}\frac{{{\rm{N}}{{\rm{m}}^{\rm{2}}}}}{{{\rm{\;k}}{{\rm{g}}^{\rm{2}}}}}\frac{{{\rm{1}}{{\rm{0}}^{{\rm{13}}}}{\rm{ \times 2 \times 1}}{{\rm{0}}^{{\rm{30}}}}{\rm{\;kg \times 70\;kg}}}}{{{{\left( {{\rm{2 \times 1}}{{\rm{0}}^{\rm{6}}}{\rm{ \times 3 \times 1}}{{\rm{0}}^{\rm{8}}}\frac{{\rm{m}}}{{\rm{s}}}{\rm{ \times 360 \times 24 \times 3600\;s}}} \right)}^{\rm{2}}}}}\\ & = {\rm{2}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 10\;}}}}\,{\rm{N}}\end{array}\)

Therefore, the force on a person due to Andromeda galaxy is: \({\rm{2}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 10\;}}}}\,{\rm{N}}\).

03

Evaluating the ratio of the force

The ratio of the force is evaluated as:

\(\begin{array}{}ratio & = \frac{F}{{mg}}\\ & = \frac{{{\rm{2}}{\rm{.7 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}{\rm{\;N}}}}{{{\rm{70\;kg \times 9}}{\rm{.81}}\frac{{\rm{N}}}{{{\rm{kg}}}}}}\\ & = {\rm{3}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}\end{array}\)

Therefore, the required ratio is: \({\rm{3}}{\rm{.9 \times 1}}{{\rm{0}}^{{\rm{ - 13}}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free