(a) Find the momentum of a 100 - keV x-ray photon.

(b) Find the equivalent velocity of a neutron with the same momentum.

(c) What is the neutron's kinetic energy in keV?

Short Answer

Expert verified

(a) The momentum of a photon is \[{\rm{5}}{\rm{.33 \times 1}}{{\rm{0}}^{{\rm{ - 23}}}}{\rm{Kg \times m \times }}{{\rm{s}}^{{\rm{ - 1}}}}\].

(b) The velocity of neutrons is \[{\rm{3}}{\rm{.19 \times 1}}{{\rm{0}}^{\rm{4}}}{\rm{\;m}}{{\rm{s}}^{{\rm{ - 1}}}}\].

(c) The kinetic energy of neutron is \[{\rm{5}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{keV}}\].

Step by step solution

01

Definition of Concept

Wavelength: The distance between identical points (adjacent crests) in adjacent cycles of a waveform signal propagated in space or along a wire is defined as the wavelength. This length is typically specified in wireless systems in metres (m), centimetres (cm), or millimetres (mm) (mm).

02

Find the momentum of a photon

(a)

Considering the given information,

\[\begin{array}{l}E \approx 100{\rm{keV}}\\c \approx 3 \times {10^8}\;{\rm{m}}{{\rm{s}}^{ - 1}}\end{array}\]

Apply the formula,

The relationship between energy and velocity in proton is :

\[E \approx pc\]

Or

\[p \approx \frac{E}{c}\]

We get by substituting the given joule values in the eV relation.

\[{\rm{1eV = 1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{\;J}}\]

Currently, the photon's energy is,

\[\begin{array}{l}E \approx 100 \times {10^3} \times 1.6 \times {10^{ - 19}}{\rm{eV}}\\E \approx 1.6 \times {10^{ - 15}}\;{\rm{J}}\end{array}\]

We obtain the photon's momentum,

\[\begin{array}{l}p \approx \frac{{1.6 \times {{10}^{ - 14}}}}{{3 \times {{10}^8}}}\\p \approx 5.33 \times {10^{ - 23}}\;{\rm{kg}} \cdot {\rm{m}} \cdot {{\rm{s}}^{ - 1}}\end{array}\]

Therefore, the required momentum of a photon is \[{\rm{5}}{\rm{.33 \times 1}}{{\rm{0}}^{{\rm{ - 23}}}}{\rm{Kg \times m \times }}{{\rm{s}}^{{\rm{ - 1}}}}\].

03

Find the velocity of neutrons

(b)

Considering the given information,

\[\begin{array}{l}m \approx 1.67 \times {10^{ - 27}}\;{\rm{kg}}\\{\rm{p = 5}}{\rm{.33 \times 1}}{{\rm{0}}^{{\rm{ - 23}}}}{\rm{\;kg \times m \times }}{{\rm{s}}^{{\rm{ - 1}}}}\end{array}\]

Apply the formula,

The relationship between photon and wavelength for photon momentum is:

\[p \approx mv\]

Or

\[v \approx \frac{p}{m}\]

Currently, the photon's velocity is:

\[\begin{array}{l}v \approx \frac{{5.33 \times {{10}^{ - 23}}}}{{1.67 \times {{10}^{ - 27}}}}\\v \approx 3.19 \times {10^4}\;{\rm{m}}{{\rm{s}}^{ - 1}}\end{array}\]

Therefore, the velocity of neutrons is \[{\rm{3}}{\rm{.19 \times 1}}{{\rm{0}}^{\rm{4}}}{\rm{\;m}}{{\rm{s}}^{{\rm{ - 1}}}}\].

04

Find the kinetic energy of neutron

(c)

Considering the given information,

\[\begin{array}{l}m \approx 1.67 \times {10^{ - 27}}\;{\rm{kg}}\\v \approx 3.19 \times {10^4}\;{\rm{m}}{{\rm{s}}^{ - 1}}\end{array}\]

Apply the formula,

The relationship between energy and velocity in proton kinetic energy is

\[KE \approx \frac{1}{2}m{v^2}\]

We get by putting the value for electron kinetic energy.

\[\begin{array}{l}KE \approx \frac{1}{2} \times 1.67 \times {10^{ - 27}} \times \left( {_ \times ^{3.19}\;{\rm{J}}} \right.\\KE \approx 8.52 \times {10^{ - 19}}\;{\rm{J}}\end{array}\]

We get by substituting the given joule values in the eV relation.

\[{\rm{1eV = 1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{\;J}}\]

Kinetic energy is measured in joules and is written as,

\[\begin{array}{l}E \approx 8.52 \times {10^{ - 19}} \times \frac{1}{{1.6 \times {{10}^{ - 19}}}}{\rm{eV}}\\E \approx 5.3 \times {10^{ - 3}}{\rm{keV}}\end{array}\]

Therefore, the requiredkinetic energy of neutron is\[{\rm{5}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{keV}}\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free