(a) At what speed will a proton move in a circular path of the same radius as the electron in Exercise \({\rm{22}}{\rm{.12}}\)? (b) What would the radius of the path be if the proton had the same speed as the electron? (c) What would the radius be if the proton had the same kinetic energy as the electron? (d) The same momentum?

Short Answer

Expert verified

a) The velocity of the proton must have:\({\rm{4}}{\rm{.1 \times 1}}{{\rm{0}}^{\rm{3}}}{\rm{ m/s}}\).

b) The radius of the path the proton will be made is:\({\rm{7}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{3}}}{\rm{ m}}\).

c) The radius of the path proton will make:\({\rm{188 m}}\).

d) The radius of the proton will make:\({\rm{4}}{\rm{.27 m}}\).

Step by step solution

01

Define Magnetism

Magnetic fields mediate a class of physical properties known as magnetism. A magnetic field is created by electric currents and the magnetic moments of elementary particles, which operates on other currents and magnetic moments.

02

Evaluating the velocity of the proton

(a)

In exercise\({\rm{22}}{\rm{.12}}\), the radius that was obtained was\({\rm{4}}{\rm{.27 m}}\). To get the velocity which is needed by a proton to follow the a path having the same radius.

The equation used is:\({\rm{r = }}\frac{{{\rm{mv}}}}{{{\rm{qB}}}}\).

Solving it for\({\rm{v}}\)where the value of\({\rm{m}}\)is the proton's mass and the value of\({\rm{B}}\)is the strength of the magnetic field of the earth.

\({\text{V = }}\frac{{{\text{rqB}}}}{{\text{m}}}\)

\({\text{ = }}\frac{{{\text{4}}{\text{.27 m \times 1}}{\text{.6 \times 1}}{{\text{0}}^{{\text{ - 19}}}}{\text{C \times 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ T}}}}{{{\text{ 1}}{\text{.67 \times 1}}{{\text{0}}^{{\text{ - 27}}}}{\text{ kg}}}}\)

\({\text{ = 4}}{\text{.1 \times 1}}{{\text{0}}^{\text{3}}}{\text{ m/s V}}\)

Hence, the velocity of the proton must have: \({\rm{4}}{\rm{.1 \times 1}}{{\rm{0}}^{\rm{3}}}{\rm{ m/s}}\).

03

Evaluating the radius of the path

(b)

The proton has a speed of 7.5 x 10° m/s.

The radius of its path is then calculated with the help of the equation\({\rm{r = }}\frac{{{\rm{mv}}}}{{{\rm{qB}}}}\).

\({\text{r = }}\frac{{{\text{mv}}}}{{{\text{qB}}}}\)

\({\text{ = }}\frac{{{\text{1}}{\text{.67 \times 1}}{{\text{0}}^{{\text{ - 27}}}}{\text{ kg \times 7}}{\text{.5 \times 1}}{{\text{0}}^{\text{6}}}{\text{ m/s}}}}{{{\text{ 1}}{\text{.6 \times 1}}{{\text{0}}^{{\text{ - 19}}}}{\text{C \times 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ T}}}}\)

\({\text{ = 7}}{\text{.8 x 1}}{{\text{0}}^{\text{3}}}{\text{ m}}\)

Therefore, the radius of the path the proton will be made is: \({\rm{7}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{3}}}{\rm{ m}}\).

04

Evaluating the radius of the proton having same kinetic energy

(c)

The kinetic energy for the electron is:\({{\rm{(K}}{\rm{.E)}}_{\rm{e}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{m}}}{{\rm{m}}_{\rm{e}}}{\rm{v}}_{\rm{e}}^{\rm{2}}\)

The value of \({{\rm{m}}_{\rm{e}}}\) is the electron's mass and the value of \({{\rm{v}}_{\rm{e}}}\) is the electron's velocity. Then, to equate this kinetic energy such that the proton get’s its velocity from the equation: \({{\rm{(K}}{\rm{.E)}}_{\rm{p}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{m}}_{\rm{p}}}{\rm{v}}_{\rm{p}}^{\rm{2}}\).

When getting the velocity, we can then get the radius of the path the proton makes with the help of the equation:\({\rm{r = }}\frac{{{{\rm{m}}_{\rm{p}}}{{\rm{v}}_{\rm{p}}}}}{{{{\rm{m}}_{\rm{p}}}{\rm{v}}}}\).

\({{\text{(K}}{\text{.E)}}_{\text{e}}}{\text{ = (K}}{\text{.E}}{{\text{)}}_{\text{p}}}\)

\(\frac{{\text{1}}}{{\text{2}}}{{\text{m}}_{\text{e}}}{\text{v}}_{\text{e}}^{\text{2}}{\text{ = }}\frac{{\text{1}}}{{\text{2}}}{{\text{m}}_{\text{p}}}{\text{v}}_{\text{p}}^{\text{2}}\)

\({{\text{v}}_{\text{p}}}{\text{ = }}\sqrt {\frac{{{{\text{m}}_{\text{e}}}{\text{v}}_{\text{e}}^{\text{2}}}}{{{{\text{m}}_{\text{p}}}}}} \)

\({\text{ = }}\sqrt {\frac{{{\text{9}}{\text{.11 \times 1}}{{\text{0}}^{{\text{ - 31}}}}{\text{kg \times (7}}{\text{.5 \times 1}}{{\text{0}}^{\text{6}}}{\text{ m/s)}}}}{{{\text{ 1}}{\text{.67 \times 1}}{{\text{0}}^{{\text{ - 27}}}}{\text{ kg}}}}} \)

\({\text{ = 1}}{\text{.8 \times 1}}{{\text{0}}^{\text{5}}}{\text{m/s}}\)

\({\text{r = }}\frac{{{{\text{m}}_{\text{p}}}{{\text{v}}_{\text{p}}}}}{{{\text{qB}}}}\)

\({\text{ = }}\frac{{{\text{ 1}}{\text{.67 \times 1}}{{\text{0}}^{{\text{ - 27}}}}{\text{ kg \times 1}}{\text{.8 \times 1}}{{\text{0}}^{\text{5}}}{\text{ m/s}}}}{{{\text{ 1}}{\text{.6 \times 1}}{{\text{0}}^{{\text{ - 19}}}}{\text{C \times 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ T}}}}\)

\({\text{ = 188m}}\)

Hence, the radius of the path proton will make: \({\rm{188 m}}\).\({\rm{188 m}}\)

05

Evaluating the same momentum

(d)

Calculating the momentum for the electron:\({{\rm{P}}_{\rm{e}}}{\rm{ = }}{{\rm{m}}_{\rm{e}}}{{\rm{v}}_{\rm{e}}}\).

The value of\({{\rm{m}}_{\rm{e}}}\)is the electron's mass and the value of\({{\rm{v}}_{\rm{e}}}\)is the electron's velocity. Then, equating this momentum such that the proton get’s its velocity with the help of the equation:\({{\rm{P}}_{\rm{p}}}{\rm{ = }}{{\rm{m}}_{\rm{p}}}{{\rm{v}}_{\rm{p}}}\).

When getting the velocity, we can then get the radius of the path the proton makes with the help of the equation:\({\rm{r = }}\frac{{{{\rm{m}}_{\rm{p}}}{{\rm{v}}_{\rm{p}}}}}{{{{\rm{m}}_{\rm{p}}}{\rm{v}}}}\).

\({{\text{P}}_{\text{e}}}{\text{ = }}{{\text{P}}_{\text{p}}}\)

\({{\text{m}}_{\text{e}}}{{\text{v}}_{\text{e}}}{\text{ = }}{{\text{m}}_{\text{p}}}{{\text{v}}_{\text{p}}}\)

\({{\text{v}}_{\text{p}}}{\text{ = }}\frac{{{{\text{m}}_{\text{e}}}{{\text{v}}_{\text{e}}}}}{{{{\text{m}}_{\text{p}}}}}\)

\({\text{ = }}\frac{{{\text{9}}{\text{.11 \times 1}}{{\text{0}}^{{\text{ - 31}}}}{\text{kg \times (7}}{\text{.5 \times 1}}{{\text{0}}^{\text{6}}}{\text{ m/s)}}}}{{{\text{1}}{\text{.67 \times 1}}{{\text{0}}^{{\text{ - 27}}}}{\text{ kg}}}}\)

\({\text{r = }}\frac{{{{\text{m}}_{\text{p}}}{{\text{v}}_{\text{p}}}}}{{{\text{qB}}}}\)

\({\text{ = }}\frac{{{\text{ 1}}{\text{.67 \times 1}}{{\text{0}}^{{\text{ - 27}}}}{\text{ kg \times 4}}{\text{.1 \times 1}}{{\text{0}}^{\text{3}}}{\text{ m/s}}}}{{{\text{ 1}}{\text{.6 \times 1}}{{\text{0}}^{{\text{ - 19}}}}{\text{C \times 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ T}}}}\)

\({\text{ = 4}}{\text{.27 m}}\)

Therefore, the radius of the proton will make: \({\rm{4}}{\rm{.27 m}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You are told that in a certain region there is either a uniform electric or magnetic field. What measurement or observation could you make to determine the type? (Ignore the Earth’s magnetic field.)

The force per meter between the two wires of a jumper cable being used to start a stalled car is 0.225N/m(a) What is the current in the wires, given they are separated by 2.00cm? (b) Is the force attractive or repulsive?

Draw gravitational field lines between 2 masses, electric field lines between a positive and a negative charge, electric field lines between 2 positive charges and magnetic field lines around a magnet. Qualitatively describe the differences between the fields and the entities responsible for the field lines.

Find the direction and magnitude of the force that each wire experiences in Figure \(22.58(a)\)by, using vector addition.

The force on the rectangular loop of wire in the magnetic field in Figure 22.56 can be used to measure field strength. The field is uniform, and the plane of the loop is perpendicular to the field. (a) What is the direction of the magnetic force on the loop? Justify the claim that the forces on the sides of the loop are equal and opposite, independent of how much of the loop is in the field and do not affect the net force on the loop. (b) If a current of 5.00 A is used, what is the force per tesla on the 20.0-cm-wide loop?


Figure 22.56 A rectangular loop of wire carrying a current is perpendicular to a magnetic field. The field is uniform in the region shown and is zero outside that region.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free