(a) Calculate the magnitude of the acceleration due to gravity on the surface of Earth due to the Moon. (b) Calculate the magnitude of the acceleration due to gravity at Earth due to the Sun. (c) Take the ratio of the Moon’s acceleration to the Sun’s and comment on why the tides are predominantly due to the Moon in spite of this number.

Short Answer

Expert verified

(a) Magnitude of acceleration to the moon,\({{\rm{a}}_{\rm{m}}}{\rm{ = 3}}{\rm{.43x1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{ m/}}{{\rm{s}}^{\rm{2}}}\).

(b) Magnitude of acceleration to the sun,\({{\rm{a}}_{\rm{s}}}{\rm{ = 5}}{\rm{.93x1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{ m/}}{{\rm{s}}^{\rm{2}}}\).

(c) Ratio of both acceleration of moon to sun\(\frac{{{{\rm{a}}_{\rm{m}}}}}{{{{\rm{a}}_{\rm{s}}}}}{\rm{ = 5}}{\rm{.78x1}}{{\rm{0}}^{{\rm{ - 3}}}}\).

Step by step solution

01

Definition of Gravity

Gravity is a universal phenomenon and is introduced by Newton and Derived the expression for gravitational force.

02

Given Data

Mass of the earth \({{\rm{M}}_{\rm{e}}}{\rm{ = 5}}{\rm{.979 x 1}}{{\rm{0}}^{{\rm{24}}}}{\rm{ kg}}\)

Mass of the moon \({{\rm{M}}_{\rm{m}}}{\rm{ = 7}}{\rm{.3477 x 1}}{{\rm{0}}^{{\rm{22}}}}{\rm{ kg}}\)

Mass of the sun \({{\rm{M}}_{\rm{s}}}{\rm{ = 1}}{\rm{.9891 x 1}}{{\rm{0}}^{{\rm{30}}}}{\rm{ kg}}\)

Distance from surface of the earth to moon

\(\begin{aligned}{}{{\rm{R}}_{\rm{m}}}{\rm{ = }}\left( {{\rm{3}}{\rm{.84 x 1}}{{\rm{0}}^{\rm{8}}}{\rm{-- 6371 x1}}{{\rm{0}}^{\rm{3}}}} \right)\\{{\rm{R}}_{\rm{m}}}{\rm{ = 3}}{\rm{.78 x 1}}{{\rm{0}}^{\rm{8}}}{\rm{ m}}\end{aligned}\)

Distance from surface of the earth to sun

\(\begin{aligned}{}{{\rm{R}}_{\rm{s}}}{\rm{ = }}\left( {{\rm{1}}{\rm{.496 x 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{-- 6371 x 1}}{{\rm{0}}^{\rm{3}}}} \right)\\{{\rm{R}}_{\rm{s}}}{\rm{ = 1}}{\rm{.496 x 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{ m}}\end{aligned}\)

Acceleration due to gravity due to moon\({{\rm{a}}_{\rm{m}}}{\rm{ = ?}}\)

Acceleration due to gravity due to sun \({{\rm{a}}_{\rm{s}}}{\rm{ = ?}}\)

03

Calculation of Magnitude of acceleration to moon

The gravitational force on the surface of the earth due to the moon is given by the equation

\({\rm{F = G}}\frac{{{{\rm{M}}_{\rm{e}}}{{\rm{M}}_{\rm{m}}}}}{{{{\rm{R}}_{\rm{m}}}^{\rm{2}}}}\)

Substituting the value of force in this equation, we get

\({{\rm{M}}_{\rm{e}}}{{\rm{a}}_{\rm{m}}}{\rm{ = G}}\frac{{{{\rm{M}}_{\rm{e}}}{{\rm{M}}_{\rm{m}}}}}{{{{\rm{R}}_{\rm{m}}}^{\rm{2}}}}\)

\({{\rm{a}}_{\rm{m}}}{\rm{ = G}}\frac{{{{\rm{M}}_{\rm{m}}}}}{{{{\rm{R}}_{\rm{m}}}^{\rm{2}}}}\)

\({{\rm{a}}_{\rm{m}}}{\rm{ = 6}}{\rm{.673 \times 1}}{{\rm{0}}^{{\rm{ - 11}}}}\left( {\frac{{{\rm{7}}{\rm{.3477 \times 1}}{{\rm{0}}^{{\rm{22}}}}}}{{{{{\rm{(3}}{\rm{.78x1}}{{\rm{0}}^{\rm{8}}}{\rm{)}}}^{\rm{2}}}}}} \right)\)

\({{\rm{a}}_{\rm{m}}}{\rm{ = 3}}{\rm{.43x1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{ m/}}{{\rm{s}}^{\rm{2}}}\)

04

Calculation of Magnitude of acceleration to sun

Similarly, the gravitational force exerted by the sun on the earth's surface is determined by the equation.

\(\begin{aligned}{}{{\rm{M}}_{\rm{e}}}{{\rm{a}}_{\rm{s}}}{\rm{ = G}}\frac{{{{\rm{M}}_{\rm{e}}}{{\rm{M}}_{\rm{s}}}}}{{{{\rm{R}}_{\rm{s}}}^{\rm{2}}}}\\{{\rm{a}}_{\rm{s}}}{\rm{ = G}}\frac{{{{\rm{M}}_{\rm{s}}}}}{{{{\rm{R}}_{\rm{s}}}^{\rm{2}}}}\end{aligned}\)

\({{\rm{a}}_{\rm{s}}}{\rm{ = 6}}{\rm{.673 \times 1}}{{\rm{0}}^{{\rm{ - 11}}}} \times \left( {\frac{{{\rm{1}}{\rm{.9891 \times 1}}{{\rm{0}}^{{\rm{30}}}}}}{{{{{\rm{(1}}{\rm{.496x1}}{{\rm{0}}^{{\rm{11}}}}{\rm{)}}}^{\rm{2}}}}}} \right)\)

\({{\rm{a}}_{\rm{s}}}{\rm{ = 5}}{\rm{.93x1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{ m/}}{{\rm{s}}^{\rm{2}}}\)

05

Calculation of ratio of both acceleration of moon to sun

The ratio of the moon’s acceleration to the sun’s acceleration

\(\begin{aligned}{}\frac{{{{\rm{a}}_{\rm{m}}}}}{{{{\rm{a}}_{\rm{s}}}}}{\rm{ = }}\frac{{{\rm{3}}{\rm{.43x1}}{{\rm{0}}^{{\rm{ - 5}}}}}}{{{\rm{5}}{\rm{.93x1}}{{\rm{0}}^{{\rm{ - 3}}}}}}\\\frac{{{{\rm{a}}_{\rm{m}}}}}{{{{\rm{a}}_{\rm{s}}}}}{\rm{ = 5}}{\rm{.78x1}}{{\rm{0}}^{{\rm{ - 3}}}}\end{aligned}\)

If we take the difference of centripetal acceleration on two opposite sides of the moon, we get a difference of \({\rm{2}}{\rm{.2 x 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ m/}}{{\rm{s}}^{\rm{2}}}\) and for two opposite sides of the sun, this difference is \({\rm{1 x 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ m/}}{{\rm{s}}^{\rm{2}}}\). This difference tells us Centripetal force on earth is more influenced by the moon rather than the sun.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a mass is moving in a circular path on a frictionless table as shown in figure. In the Earth’s frame of reference, there is no centrifugal force pulling the mass away from the centre of rotation, yet there is a very real force stretching the string attaching the mass to the nail. Using concepts related to centripetal force and Newton’s third law, explain what force stretches the string, identifying its physical origin.

If centripetal force is directed toward the centre, why do you feel that you are ‘thrown’ away from the centre as a car goes around a curve? Explain.

Space debris left from old satellites and their launchers is becoming a hazard to other satellites

(a) Calculate the speed of a satellite in an orbit900 km above Earth’s surface.

(b) Suppose a loose rivet is in an orbit of the same radius that intersects the satellite’s orbit at an angle of90°relative to Earth. What is the velocity of the rivet relative to the satellite just before striking it?

(c) Given the rivet is 3.00 mmin size, how long will its collision with the satellite last?

(d) If its mass is0.500 g, what is the average force it exerts on the satellite? (e) How much energy in joules is generated by the collision? (The satellite’s velocity does not change appreciably, because its mass is much greater than the rivet’s.)

(a) Based on Kepler’s laws and information on the orbital characteristics of the Moon, calculate the orbital radius for an Earth satellite having a period of 1.00 h.

(b) What is unreasonable about this result?

(c) What is unreasonable or inconsistent about the premise of a 1.00 h orbit?

In one amusement park ride, riders enter a large vertical barrel and stand against the wall on its horizontal floor. The barrel is spun up and the floor drops away. Riders feel as if they are pinned to the wall by a force something like the gravitational force. This is a fictitious force sensed and used by the riders to explain events in the rotating frame of reference of the barrel. Explain in an inertial frame of reference (Earth is nearly one) what pins the riders to the wall, and identify all of the real forces acting on them.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free