(a) What is the acceleration due to gravity on the surface of the Moon?

(b) On the surface of Mars? The mass of Mars is \({\bf{6}}.{\bf{418}} \times {\bf{1}}{{\bf{0}}^{{\bf{23}}}}{\bf{kg}}\) and its radius is\({\bf{3}}.{\bf{38}} \times {\bf{1}}{{\bf{0}}^{\bf{6}}}{\bf{m}}\).

Short Answer

Expert verified

(a) The gravitational acceleration on the moon is\({{\rm{a}}_{\rm{m}}}{\rm{ = 1}}{\rm{.63 m/}}{{\rm{s}}^{\rm{2}}}\).

(b) The gravitational acceleration on the surface of mars is \({{\rm{a}}_{{\rm{mars}}}}{\rm{ = 3}}{\rm{.75 m/}}{{\rm{s}}^{\rm{2}}}\).

Step by step solution

01

Definition of Gravity

Gravity is a universal phenomenon and is introduced by Newton and Derived the expression for gravitational force.

02

Given and known Data

Moon’s radius\({{\rm{R}}_{\rm{m}}}{\rm{ = 1}}{\rm{.737 x 1}}{{\rm{0}}^{\rm{6}}}{\rm{ m}}\)

Moon’s mass\({{\rm{M}}_{\rm{m}}}{\rm{ = 7}}{\rm{.3477 x 1}}{{\rm{0}}^{{\rm{22}}}}{\rm{ kg}}\)

Mars’s radius\({{\rm{R}}_{{\rm{mars}}}}{\rm{ = 3}}{\rm{.38 x 1}}{{\rm{0}}^{\rm{6}}}{\rm{ m}}\)

Mars’s mass\({{\rm{M}}_{{\rm{mars}}}}{\rm{ = 6}}{\rm{.418 x 1}}{{\rm{0}}^{{\rm{23}}}}{\rm{ kg}}\)

Gravitational acceleration on the moon\({{\rm{a}}_{\rm{m}}}{\rm{ = }}{{\rm{?}}^{}}\)

Gravitational acceleration on mars \({{\rm{a}}_{{\rm{mars}}}}{\rm{ = ?}}\)

03

Calculating gravitational acceleration on the moon

Gravitational acceleration on the moon given by

\({{\rm{a}}_{\rm{m}}}{\rm{ = G}}\frac{{{{\rm{M}}_{\rm{m}}}}}{{{{\rm{R}}_{\rm{m}}}^{\rm{2}}}}\)

Here, G is the gravitation constant.

\({{\rm{a}}_{\rm{m}}}{\rm{ = 6}}{\rm{.673x1}}{{\rm{0}}^{{\rm{ - 11}}}}\frac{{{\rm{7}}{\rm{.3477x1}}{{\rm{0}}^{{\rm{22}}}}}}{{{{{\rm{(1}}{\rm{.737x1}}{{\rm{0}}^{\rm{6}}}{\rm{)}}}^{\rm{2}}}}}\)

\({{\rm{a}}_{\rm{m}}}{\rm{ = 1}}{\rm{.63 m/}}{{\rm{s}}^{\rm{2}}}\)

04

Calculating gravitational acceleration on mars

Gravitational acceleration on mars given by

\({{\rm{a}}_{{\rm{mars}}}}{\rm{ = G}}\frac{{{{\rm{M}}_{{\rm{mars}}}}}}{{{{\rm{R}}_{{\rm{mars}}}}^{\rm{2}}}}\)

We get what we want by swapping values.

\({{\rm{a}}_{{\rm{mars}}}}{\rm{ = 6}}{\rm{.673x1}}{{\rm{0}}^{{\rm{ - 11}}}} \times \frac{{{\rm{6}}{\rm{.418x1}}{{\rm{0}}^{{\rm{23}}}}}}{{{{{\rm{(3}}{\rm{.38x1}}{{\rm{0}}^{\rm{6}}}{\rm{)}}}^{\rm{2}}}}}\)

\({{\rm{a}}_{{\rm{mars}}}}{\rm{ = 3}}{\rm{.75 m/}}{{\rm{s}}^{\rm{2}}}\)

The values of acceleration due to gravity on moon and mars are \({\rm{1}}{\rm{.63 m/}}{{\rm{s}}^{\rm{2}}}\) and \({\rm{3}}{\rm{.75 m/}}{{\rm{s}}^{\rm{2}}}\) respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free