Given the vectors \(\mathbf{M}=-10 \mathbf{a}_{x}+4 \mathbf{a}_{y}-8 \mathbf{a}_{z}\) and \(\mathbf{N}=8 \mathbf{a}_{x}+7 \mathbf{a}_{y}-2 \mathbf{a}_{z}\), find: ( \(a\) ) a unit vector in the direction of \(-\mathbf{M}+2 \mathbf{N} ;(b)\) the magnitude of \(5 \mathbf{a}_{x}+\) \(\mathbf{N}-3 \mathbf{M} ;(c)|\mathbf{M}||2 \mathbf{N}|(\mathbf{M}+\mathbf{N})\)

Short Answer

Expert verified
1. The unit vector in the direction of \(-\mathbf{M}+2 \mathbf{N}\) is \(\frac{26 \mathbf{a}_{x}+10 \mathbf{a}_{y}+4 \mathbf{a}_{z}}{\sqrt{756}}\). 2. The magnitude of \(5 \mathbf{a}_{x} + \mathbf{N} - 3 \mathbf{M}\) is \(\sqrt{2138}\). 3. The result of \(|\mathbf{M}||2 \mathbf{N}|(\mathbf{M}+\mathbf{N})\) is \(-272 \mathbf{a}_{x}+1496 \mathbf{a}_{y}-1360 \mathbf{a}_{z}\).

Step by step solution

01

Calculate \(-\mathbf{M}+2 \mathbf{N}\) Vector#

First, let's perform the vector arithmetic to find \(-\mathbf{M}+2 \mathbf{N}\): \begin{align*} -\mathbf{M}+2 \mathbf{N} &= -(-10 \mathbf{a}_{x}+4 \mathbf{a}_{y}-8 \mathbf{a}_{z})+2(8 \mathbf{a}_{x}+7 \mathbf{a}_{y}-2 \mathbf{a}_{z}) \\ &= 10 \mathbf{a}_{x}-4 \mathbf{a}_{y}+8 \mathbf{a}_{z}+16 \mathbf{a}_{x}+14 \mathbf{a}_{y}-4 \mathbf{a}_{z} \\ &= (10+16) \mathbf{a}_{x}+(-4+14) \mathbf{a}_{y}+(8-4) \mathbf{a}_{z} \\ &= 26 \mathbf{a}_{x}+10 \mathbf{a}_{y}+4 \mathbf{a}_{z} \end{align*}The resulting vector is \(26 \mathbf{a}_{x}+10 \mathbf{a}_{y}+4 \mathbf{a}_{z}\).
02

Calculate Unit Vector in the Direction of \(-\mathbf{M}+2 \mathbf{N}\)

To find the unit vector, we need to divide the components of the resulting vector by its magnitude. First, find the magnitude: $$|\mathbf{V}|=\sqrt{(26)^2+(10)^2+(4)^2}=\sqrt{26^2 + 10^2 + 4^2} = \sqrt{756}$$Now, find the unit vector:$$\hat{\mathbf{V}} = \frac{26 \mathbf{a}_{x}+10 \mathbf{a}_{y}+4 \mathbf{a}_{z}}{\sqrt{756}}$$
03

Calculate \(5 \mathbf{a}_{x}+\mathbf{N}-3\mathbf{M}\) Vector#

Next, let's perform the vector arithmetic to find \(5 \mathbf{a}_{x}+\mathbf{N}-3\mathbf{M}\): \begin{align*} 5 \mathbf{a}_{x}+\mathbf{N}-3\mathbf{M}&=5 \mathbf{a}_{x}+(8 \mathbf{a}_{x}+7 \mathbf{a}_{y}-2 \mathbf{a}_{z}) -3(-10 \mathbf{a}_{x}+4 \mathbf{a}_{y}-8 \mathbf{a}_{z}) \\ &= 5 \mathbf{a}_{x}+8 \mathbf{a}_{x}+7 \mathbf{a}_{y}-2 \mathbf{a}_{z}+30 \mathbf{a}_{x}-12 \mathbf{a}_{y}+24 \mathbf{a}_{z} \\ &= (5+8+30) \mathbf{a}_{x}+(7-12) \mathbf{a}_{y}+(-2+24) \mathbf{a}_{z} \\ &= 43 \mathbf{a}_{x}-5 \mathbf{a}_{y}+22 \mathbf{a}_{z} \end{align*}The resulting vector is \(43 \mathbf{a}_{x}-5 \mathbf{a}_{y}+22 \mathbf{a}_{z}\).
04

Calculate Magnitude of \(5 \mathbf{a}_{x}+\mathbf{N}-3\mathbf{M}\)#

Find the magnitude of the resulting vector: $$|\mathbf{W}|=\sqrt{(43)^2+(-5)^2+(22)^2}=\sqrt{43^2 + 5^2 + 22^2} = \sqrt{2138}$$
05

Calculate \(|\mathbf{M}||2\mathbf{N}|(\mathbf{M}+\mathbf{N})\)#

To solve this, first find the magnitude of \(\mathbf{M}\) and \(2\mathbf{N}\): \begin{align*} |\mathbf{M}|=\sqrt{(-10)^2+(4)^2+(-8)^2}=\sqrt{10^2+4^2+8^2}=\sqrt{136} \\ 2\mathbf{N}=2(8 \mathbf{a}_{x}+7 \mathbf{a}_{y}-2 \mathbf{a}_{z})=16 \mathbf{a}_{x}+14 \mathbf{a}_{y}-4 \mathbf{a}_{z}\\ |2\mathbf{N}|=\sqrt{(16)^2+(14)^2+(-4)^2}=\sqrt{16^2+14^2+4^2}=\sqrt{372} \end{align*}Now, find the vector \(\mathbf{M}+\mathbf{N}\): \begin{align*} \mathbf{M}+\mathbf{N}&=(-10 \mathbf{a}_{x}+4 \mathbf{a}_{y}-8\mathbf{a}_{z})+(8 \mathbf{a}_{x}+7 \mathbf{a}_{y}-2 \mathbf{a}_{z}) \\ &= (-10+8) \mathbf{a}_{x}+(4+7) \mathbf{a}_{y}+(-8-2) \mathbf{a}_{z} \\ &= -2 \mathbf{a}_{x}+11 \mathbf{a}_{y}-10 \mathbf{a}_{z} \end{align*}Finally, calculate \(|\mathbf{M}||2 \mathbf{N}|(\mathbf{M}+\mathbf{N})\):$$\sqrt{136} \cdot \sqrt{372}(-2 \mathbf{a}_{x}+11 \mathbf{a}_{y}-10 \mathbf{a}_{z})=-272 \mathbf{a}_{x}+1496 \mathbf{a}_{y}-1360 \mathbf{a}_{z}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A vector field is specified as \(\mathbf{G}=24 x y \mathbf{a}_{x}+12\left(x^{2}+2\right) \mathbf{a}_{y}+18 z^{2} \mathbf{a}_{z} .\) Given two points, \(P(1,2,-1)\) and \(Q(-2,1,3)\), find \((a) \mathbf{G}\) at \(P ;(b)\) a unit vector in the direction of \(\mathbf{G}\) at \(Q ;(c)\) a unit vector directed from \(Q\) toward \(P ;(d)\) the equation of the surface on which \(|\mathbf{G}|=60\).

Write an expression in rectangular components for the vector that extends from \(\left(x_{1}, y_{1}, z_{1}\right)\) to \(\left(x_{2}, y_{2}, z_{2}\right)\) and determine the magnitude of this vector.

(a) Express the field \(\mathbf{D}=\left(x^{2}+y^{2}\right)^{-1}\left(x \mathbf{a}_{x}+y \mathbf{a}_{y}\right)\) in cylindrical components and cylindrical variables. ( \(b\) ) Evaluate \(\mathbf{D}\) at the point where \(\rho=2, \phi=0.2 \pi\), and \(z=5\), expressing the result in cylindrical and rectangular components.

The surfaces \(\rho=3, \rho=5, \phi=100^{\circ}, \phi=130^{\circ}, z=3\), and \(z=4.5\) define a closed surface. Find ( \(a\) ) the enclosed volume; \((b)\) the total area of the enclosing surface; \((c)\) the total length of the twelve edges of the surfaces: (d) the length of the longest straight line that lies entirely within the volume.

Two unit vectors, \(\mathbf{a}_{1}\) and \(\mathbf{a}_{2}\), lie in the \(x y\) plane and pass through the origin. They make angles \(\phi_{1}\) and \(\phi_{2}\), respectively, with the \(x\) axis \((a)\) Express each vector in rectangular components; \((b)\) take the dot product and verify the trigonometric identity, \(\cos \left(\phi_{1}-\phi_{2}\right)=\cos \phi_{1} \cos \phi_{2}+\sin \phi_{1} \sin \phi_{2} ;(c)\) take the cross product and verify the trigonometric identity \(\sin \left(\phi_{2}-\phi_{1}\right)=\sin \phi_{2} \cos \phi_{1}-\cos \phi_{2} \sin \phi_{1}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free