Given point \(P\left(r=0.8, \theta=30^{\circ}, \phi=45^{\circ}\right)\) and \(\mathbf{E}=1 / r^{2}\left[\cos \phi \mathbf{a}_{r}+\right.\) \(\left.(\sin \phi / \sin \theta) \mathbf{a}_{\phi}\right]\), find \((a) \mathbf{E}\) at \(P ;(b)|\mathbf{E}|\) at \(P ;(c)\) a unit vector in the direction of \(\mathbf{E}\) at \(P\)

Short Answer

Expert verified
Question: Find the vector \(\mathbf{E}\) at point \(P\), its magnitude, and a unit vector in the direction of \(\mathbf{E}\) at point \(P\), given \(\mathbf{E}=1 / r^{2}\left[\cos \phi \mathbf{a}_{r}+(\sin \phi / \sin \theta) \mathbf{a}_{\phi}\right]\) and \(P(r=0.8, \theta=30^{\circ}, \phi=45^{\circ})\). Answer: The vector \(\mathbf{E}\) at point \(P\) is given by \(\mathbf{E}_{P} = \frac{5\sqrt{2}}{8}\mathbf{a}_r + \frac{5\sqrt{2}}{4}\mathbf{a}_{\phi}\). Its magnitude is \(|\mathbf{E}_{P}| = 2.5\sqrt{2}\). The unit vector in the direction of \(\mathbf{E}\) at point \(P\) is \(\mathbf{\hat{E}}_P = \frac{1}{5} \mathbf{a}_r + \frac{2}{5}\mathbf{a}_{\phi}\).

Step by step solution

01

Find the vector \(\mathbf{E}\) at point \(P\)

Given \(\mathbf{E}=1 / r^{2}\left[\cos \phi \mathbf{a}_{r}+\left.(\sin \phi / \sin \theta) \mathbf{a}_{\phi}\right].\) At point \(P(r=0.8, \theta=30^{\circ}, \phi=45^{\circ})\), we can substitute the given values into \(\mathbf{E}\) and get: \(\mathbf{E}_{P} = \frac{1}{(0.8)^2} [\cos(45^{\circ})\mathbf{a}_r + \frac{\sin(45^{\circ})}{\sin(30^{\circ})}\mathbf{a}_{\phi}]\) Now, simplify the expression: \(\mathbf{E}_{P} = \frac{1}{0.64} [\frac{\sqrt{2}}{2}\mathbf{a}_r + \sqrt{2}\mathbf{a}_{\phi}]\) \(\mathbf{E}_{P} = \frac{5\sqrt{2}}{8}\mathbf{a}_r + \frac{5\sqrt{2}}{4}\mathbf{a}_{\phi}\)
02

Find the magnitude of \(\mathbf{E}\) at point \(P\)

To find the magnitude, we first need to find the components of \(\mathbf{E}\) in rectangular coordinates. We have: \(\mathbf{E}_{P} = \frac{5\sqrt{2}}{8}\mathbf{a}_r + \frac{5\sqrt{2}}{4}\mathbf{a}_{\phi}\) Now, calculate the magnitude as follows: \(|\mathbf{E}_{P}| = \sqrt{\left(\frac{5\sqrt{2}}{8}\right)^2 + \left(\frac{5\sqrt{2}}{4}\right)^2}\) \(|\mathbf{E}_{P}| = \sqrt{\frac{50}{64} + \frac{50}{16}}\) \(|\mathbf{E}_{P}| = 2.5\sqrt{2}\)
03

Find a unit vector in the direction of \(\mathbf{E}\) at point \(P\)

To find a unit vector in the direction of \(\mathbf{E}\) at point \(P\), divide the vector \(\mathbf{E}_{P}\) by its magnitude: \(\mathbf{\hat{E}}_P = \frac{\mathbf{E}_{P}}{|\mathbf{E}_{P}|} = \frac{1}{2.5\sqrt{2}} (\frac{5\sqrt{2}}{8}\mathbf{a}_r + \frac{5\sqrt{2}}{4}\mathbf{a}_{\phi})\) \(\mathbf{\hat{E}}_P = \frac{1}{5} (\mathbf{a}_r + 2\mathbf{a}_{\phi})\) So, the unit vector in the direction of \(\mathbf{E}\) at point \(P\) is: \(\mathbf{\hat{E}}_P = \frac{1}{5} \mathbf{a}_r + \frac{2}{5}\mathbf{a}_{\phi}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A field is given as \(\mathbf{G}=\left[25 /\left(x^{2}+y^{2}\right)\right]\left(x \mathbf{a}_{x}+y \mathbf{a}_{y}\right) .\) Find \((a)\) a unit vector in the direction of \(\mathbf{G}\) at \(P(3,4,-2) ;(b)\) the angle between \(\mathbf{G}\) and \(\mathbf{a}_{x}\) at \(P\); (c) the value of the following double integral on the plane \(y=7\). $$ \int_{0}^{4} \int_{0}^{2} \mathbf{G} \cdot \mathbf{a}_{y} d z d x $$

Given the points \(M(0.1,-0.2,-0.1), N(-0.2,0.1,0.3)\), and \(P(0.4,0,0.1)\), find \((a)\) the vector \(\mathbf{R}_{M N} ;(b)\) the dot product \(\mathbf{R}_{M N} \cdot \mathbf{R}_{M P} ;(c)\) the scalar projection of \(\mathbf{R}_{M N}\) on \(\mathbf{R}_{M P} ;(d)\) the angle between \(\mathbf{R}_{M N}\) and \(\mathbf{R}_{M P}\).

Given the vectors \(\mathbf{M}=-10 \mathbf{a}_{x}+4 \mathbf{a}_{y}-8 \mathbf{a}_{z}\) and \(\mathbf{N}=8 \mathbf{a}_{x}+7 \mathbf{a}_{y}-2 \mathbf{a}_{z}\), find: ( \(a\) ) a unit vector in the direction of \(-\mathbf{M}+2 \mathbf{N} ;(b)\) the magnitude of \(5 \mathbf{a}_{x}+\) \(\mathbf{N}-3 \mathbf{M} ;(c)|\mathbf{M}||2 \mathbf{N}|(\mathbf{M}+\mathbf{N})\)

Point \(A(-4,2,5)\) and the two vectors, \(\mathbf{R}_{A M}=(20,18-10)\) and \(\mathbf{R}_{A N}=(-10,8,15)\), define a triangle. Find \((a)\) a unit vector perpendicular to the triangle; \((b)\) a unit vector in the plane of the triangle and perpendicular to \(\mathbf{R}_{A N} ;(c)\) a unit vector in the plane of the triangle that bisects the interior angle at \(A\).

Express the uniform vector field \(\mathbf{F}=5 \mathbf{a}_{x}\) in \((a)\) cylindrical components; (b) spherical components.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free