Chapter 13: Problem 1
The conductors of a coaxial transmission line are copper \(\left(\sigma_{c}=5.8 \times\right.\) \(\left.10^{7} \mathrm{~S} / \mathrm{m}\right)\), and the dielectric is polyethylene \(\left(\epsilon_{r}^{\prime}=2.26, \sigma / \omega \epsilon^{\prime}=0.0002\right) .\) If the inner radius of the outer conductor is \(4 \mathrm{~mm}\), find the radius of the inner conductor so that \((a) Z_{0}=50 \Omega ;(b) C=100 \mathrm{pF} / \mathrm{m} ;(c) L=0.2 \mu \mathrm{H} / \mathrm{m}\). A lossless line can be assumed.