A toroid having a cross section of rectangular shape is defined by the
following surfaces: the cylinders \(\rho=2\) and \(\rho=3 \mathrm{~cm}\), and the
planes \(z=1\) and \(z=2.5 \mathrm{~cm}\). The toroid carries a surface current
density of \(-50 \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}\) on the surface
\(\rho=3 \mathrm{~cm}\). Find \(\mathbf{H}\) at the point \(P(\rho, \phi, z):(a)
P_{A}(1.5 \mathrm{~cm}, 0\), \(2 \mathrm{~cm}) ;\left(\right.\) b) \(P_{B}(2.1
\mathrm{~cm}, 0,2 \mathrm{~cm}) ;\) (c) \(P_{C}(2.7 \mathrm{~cm}, \pi / 2,2
\mathrm{~cm}) ;\) (d) \(P_{D}(3.5 \mathrm{~cm},\),
\(\pi / 2,2 \mathrm{~cm})\)