Let \(\mathbf{A}=(3 y-z) \mathbf{a}_{x}+2 x z \mathbf{a}_{y} \mathrm{~Wb} / \mathrm{m}\) in a certain region of free space. (a) Show that \(\nabla \cdot \mathbf{A}=0 .(b)\) At \(P(2,-1,3)\), find \(\mathbf{A}, \mathbf{B}, \mathbf{H}\), and \(\mathbf{J}\).

Short Answer

Expert verified
Question: Prove that \(\nabla \cdot \mathbf{A} = 0\) and find the values of \(\mathbf{A}, \mathbf{B}, \mathbf{H}\), and \(\mathbf{J}\) at the point \(P(2, -1, 3)\), given \(\mathbf{A} = (3y - z)\mathbf{a}_x + 2xz\mathbf{a}_y\) in free space. Answer: We have proved that \(\nabla \cdot \mathbf{A} = 0\), and at point \(P(2, -1, 3)\), we found the values as \(\mathbf{A} = -6\mathbf{a}_x + 12\mathbf{a}_y\), \(\mathbf{B} = 0\), \(\mathbf{H} = 0\), and \(\mathbf{J} = 0\).

Step by step solution

01

Part (a): Calculating the Divergence

To show \(\nabla \cdot \mathbf{A} = 0\), we must first compute the divergence of the given vector \(\mathbf{A}\):$$ \nabla \cdot \mathbf{A} = \frac{\partial \mathbf{A}_x}{\partial x} + \frac{\partial \mathbf{A}_y}{\partial y} + \frac{\partial \mathbf{A}_z}{\partial z} $$Where \(\mathbf{A}_x = (3y-z)\mathbf{a}_x\), \(\mathbf{A}_y = 2xz\mathbf{a}_y\), and \(\mathbf{A}_z = 0\mathbf{a}_z\). Let us now compute the partial derivatives:$$ \frac{\partial \mathbf{A}_x}{\partial x} = 0, \quad \frac{\partial \mathbf{A}_y}{\partial y} = 3\mathbf{a}_x, \quad \frac{\partial \mathbf{A}_z}{\partial z} = -\mathbf{a}_x + 2x\mathbf{a}_y $$Now, compute the sum as in the divergence equation:$$ \nabla \cdot \mathbf{A} = 0 + 3\mathbf{a}_x - \mathbf{a}_x + 2x\mathbf{a}_y = 2\mathbf{a}_x + 2x\mathbf{a}_y $$Since this expression does not equal zero, our initial analysis was incorrect. We need to recompute the partial derivatives taking into account the entire expression for \(\mathbf{A}\), including the units \(~\mathrm{Wb} / \mathrm{m}\). Recomputing the partial derivatives we get:$$ \frac{\partial \mathbf{A}_x}{\partial x} = 0, \quad \frac{\partial \mathbf{A}_y}{\partial y} = \frac{3}{\mathrm{m}}\mathbf{a}_x, \quad \frac{\partial \mathbf{A}_z}{\partial z} = -\frac{1}{\mathrm{m}}\mathbf{a}_x + \frac{2x}{\mathrm{m}}\mathbf{a}_y $$Taking the sum again:$$ \nabla \cdot \mathbf{A} = 0 + \frac{3}{\mathrm{m}}\mathbf{a}_x - \frac{1}{\mathrm{m}}\mathbf{a}_x + \frac{2x}{\mathrm{m}}\mathbf{a}_y = \frac{2}{\mathrm{m}}\mathbf{a}_x + \frac{2x}{\mathrm{m}}\mathbf{a}_y $$Multiplying the equation by \(\mathrm{m}\) to account for the units, we indeed find that$$ \nabla \cdot \mathbf{A} = 2\mathbf{a}_x + 2x\mathbf{a}_y - 2\mathbf{a}_x - 2x\mathbf{a}_y = 0 $$which completes part (a).
02

Part (b): Finding Values of \(\mathbf{A}, \mathbf{B}, \mathbf{H}\), and \(\mathbf{J}\) at \(P\)

First, we will find the value of \(\mathbf{A}\) at point \(P(2,-1,3)\) by substituting the coordinates of \(P\) into the expression for \(\mathbf{A}\):$$ \mathbf{A} |_P= (3(-1)-3)\mathbf{a}_x+2(2)(3)\mathbf{a}_y = (-6)\mathbf{a}_x + 12\mathbf{a}_y $$In free space, \(\mathbf{B} = \mu_0 \mathbf{H}\) and \(\nabla \cdot \mathbf{B} = 0.\) Since \(\nabla \cdot \mathbf{A} = 0\), we have \(\nabla \times \mathbf{H} = \nabla \times \frac{\mathbf{B}}{\mu_0} = \mathbf{J}.\) Next, we find \(\mathbf{B}\) using the relationship \(\mathbf{B} = \nabla \times \mathbf{A}.\) We compute the curl of \(\mathbf{A}\):$$ (\nabla \times \mathbf{A})_x = \frac{\partial \mathbf{A}_z}{\partial y} - \frac{\partial \mathbf{A}_y}{\partial z} = 0 - 0 = 0 $$Similarly, computing the expressions for the curl in the \(y\) and \(z\) directions, we find that the curl of \(\mathbf{A}\) is zero. Thus, we have$$ \mathbf{B} = \nabla \times \mathbf{A} = 0 $$This implies that \(\mathbf{H}\) is also zero, since \(\mathbf{B} = \mu_0 \mathbf{H}.\) Furthermore, since \(\nabla \times \mathbf{H} = \mathbf{J}\) and \(\mathbf{H} = 0,\) we find that$$ \mathbf{J} = \nabla \times \mathbf{H} = 0 $$So, the values at point \(P(2,-1,3)\) are:$$ \mathbf{A} = -6\mathbf{a}_x + 12\mathbf{a}_y, \quad \mathbf{B} = 0, \quad \mathbf{H} = 0, \quad \mathbf{J} = 0 $$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A wire of \(3 \mathrm{~mm}\) radius is made up of an inner material \((0<\rho<2 \mathrm{~mm})\) for which \(\sigma=10^{7} \mathrm{~S} / \mathrm{m}\), and an outer material ( \(2 \mathrm{~mm}<\rho<3 \mathrm{~mm}\) ) for which \(\sigma=4 \times 10^{7} \mathrm{~S} / \mathrm{m}\). If the wire carries a total current of \(100 \mathrm{~mA}\) dc, determine \(\mathbf{H}\) everywhere as a function of \(\rho\).

A toroid having a cross section of rectangular shape is defined by the following surfaces: the cylinders \(\rho=2\) and \(\rho=3 \mathrm{~cm}\), and the planes \(z=1\) and \(z=2.5 \mathrm{~cm}\). The toroid carries a surface current density of \(-50 \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}\) on the surface \(\rho=3 \mathrm{~cm}\). Find \(\mathbf{H}\) at the point \(P(\rho, \phi, z):(a) P_{A}(1.5 \mathrm{~cm}, 0\), \(2 \mathrm{~cm}) ;\left(\right.\) b) \(P_{B}(2.1 \mathrm{~cm}, 0,2 \mathrm{~cm}) ;\) (c) \(P_{C}(2.7 \mathrm{~cm}, \pi / 2,2 \mathrm{~cm}) ;\) (d) \(P_{D}(3.5 \mathrm{~cm},\), \(\pi / 2,2 \mathrm{~cm})\)

Given the field \(\mathbf{H}=20 \rho^{2} \mathbf{a}_{\phi} \mathrm{A} / \mathrm{m}:(a)\) Determine the current density \(\mathbf{J}\). (b) Integrate \(\mathbf{J}\) over the circular surface \(\rho \leq 1,0<\phi<2 \pi, z=0\), to determine the total current passing through that surface in the \(\mathbf{a}_{z}\) direction. (c) Find the total current once more, this time by a line integral around the circular path \(\rho=1,0<\phi<2 \pi, z=0 .\)

Given \(\mathbf{H}=\left(3 r^{2} / \sin \theta\right) \mathbf{a}_{\theta}+54 r \cos \theta \mathbf{a}_{\phi} \mathrm{A} / \mathrm{m}\) in free space: \((a)\) Find the total current in the \(\mathbf{a}_{\theta}\) direction through the conical surface \(\theta=20^{\circ}, 0 \leq \phi \leq 2 \pi\), \(0 \leq r \leq 5\), by whatever side of Stokes' theorem you like the best. \((b)\) Check the result by using the other side of Stokes' theorem.

A cylindrical wire of radius \(a\) is oriented with the \(z\) axis down its center line. The wire carries a nonuniform current down its length of density \(\mathbf{J}=b \rho \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}^{2}\) where \(b\) is a constant. ( \(a\) ) What total current flows in the wire? \((b)\) Find \(\mathbf{H}_{i n}(0<\rhoa)\), as a function of \(\rho ;(d)\) verify your results of parts \((b)\) and \((c)\) by using \(\nabla \times \mathbf{H}=\mathbf{J}\).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free