Consider the special case where the pendulum system of Problem \(7.3\) has the
property that \(k / m \ll g / L\). If the pendulums are released from rest when
in the configuration \(\theta_{1}(0)=\theta_{0}\) and \(\theta_{2}(0)=0\), show
that the response is of the form
$$
\begin{aligned}
&\theta_{1}(t) \cong A_{1}(t) \cos \omega_{a} t=\theta_{0} \cos \omega_{b} t
\cos \omega_{a} t \\
&\theta_{2}(t) \cong A_{2}(t) \sin \omega_{a} t=\theta_{0} \sin \omega_{b} t
\sin \omega_{a} t
\end{aligned}
$$
$$
\omega_{a}=\left(\omega_{2}+\omega_{1}\right) / 2,
\omega_{b}=\left(\omega_{2}-\omega_{1}\right) / 2
$$
where
$$
\omega_{a}=\left(\omega_{2}+\omega_{1}\right) / 2, \quad
\omega_{b}=\left(\omega_{2}-\omega_{1}\right) / 2
$$
Plot the response. What type of behavior does the pendulum system exhibit?