Chapter 16: Problem 11
The expression \(\tan \theta \sec \theta\left(1-\sin ^{2} \theta\right) / \cos \theta \operatorname{simplifies~to~}\) a) \(\sin \theta\) b) \(\cos \theta\) c) \(\tan \theta\) d) \(\sec \theta\)
Chapter 16: Problem 11
The expression \(\tan \theta \sec \theta\left(1-\sin ^{2} \theta\right) / \cos \theta \operatorname{simplifies~to~}\) a) \(\sin \theta\) b) \(\cos \theta\) c) \(\tan \theta\) d) \(\sec \theta\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe \(x\) - and \(y\)-axes are the asymptotes of a hyperbola that passes through the point \((2,2)\). Its equation is a) \(x^{2}-y^{2}=0\) b) \(x y=4\) c) \(y^{2}-x^{2}=0\) d) \(x^{2}+y^{2}=4\)
Determine \(\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{rr}-1 & 0 \\ 1 & 2\end{array}\right]\). a) \(\left[\begin{array}{rr}1 & 4 \\ -1 & 2\end{array}\right]\) b) \(\left[\begin{array}{rr}1 & -1 \\ 4 & 2\end{array}\right]\) c) \(\left[\begin{array}{r}1 \\ -1\end{array}\right]\) d) \(\left[\begin{array}{l}4 \\ 2\end{array}\right]\)
Derive an expression \(\int x \cos x d x\) a) \(x \cos x-\sin x+C\) c) \(x \sin x-\cos x+C\) b) \(x \sin x+\cos x+C\) d) \(x \cos x+\sin x+C\)
If \(y=\ln x+e^{x} \sin x\), find \(d y / d x\) at \(x=1\). a) \(1.23\) b) \(3.68\) c) \(4.76\) d) \(6.12\)
Solve for \(\left[x_{i}\right]\) $$ \begin{aligned} 3 x_{1}+2 x_{2} &=-2 \\ x_{1}-x_{2}+x_{3} &=0 \\ 4 x_{1}+2 x_{3} &=4 \end{aligned} $$ a) \(\left[\begin{array}{r}2 \\ 4 \\ -6\end{array}\right]\) \(\left[\begin{array}{l}2 \\ 4 \\ 8\end{array}\right]\) d) \(\left[\begin{array}{r}8 \\ 14\end{array}\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.