Chapter 16: Problem 29
Subtract \(5 e^{0.2 t}\) from \(6 e^{2.3 t}\). a) \(-0.903+3.481 i\) c) \(-8.898-5.468 i\) b) \(-8.898+3.48 \mathrm{l} i\) d) \(-0.903-5.468 i\)
Chapter 16: Problem 29
Subtract \(5 e^{0.2 t}\) from \(6 e^{2.3 t}\). a) \(-0.903+3.481 i\) c) \(-8.898-5.468 i\) b) \(-8.898+3.48 \mathrm{l} i\) d) \(-0.903-5.468 i\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA \(100-\mathrm{m}\)-long track is to be built \(50 \mathrm{~m}\) wide. If it is to be elliptical, what equation could describe it if the 100 -m length is along the \(x\)-axis? a) \(50 x^{2}+100 y^{2}=1000\) c) \(4 x^{2}+y^{2}=2500\) b) \(2 x^{2}+y^{2}=250\) d) \(x^{2}+2 y^{2}=250\)
Evaluate \(2 \int_{0}^{1} e^{x} \sin x d x\) a) \(1.82\) b) \(1.94\) c) \(2.05\) d) \(2.16\)
Express \(2 \sin ^{2} \theta\) as a function of \(\cos 2 \theta\). a) \(\cos 2 \theta-1\) b) \(\cos 2 \theta+1\) c) \(\cos 2 \theta+2\) d) \(1-\cos 2 \theta\)
Evaluate \(\int_{0}^{2}\left(e^{x}+\sin x\right) d x\) a) \(7.81\) b) \(6.21\) c) \(5.92\) d) \(5.61\)
\(\sqrt{4+x}\) can be written as the series a) \(2-\frac{x}{4}+\frac{x^{2}}{64}+\cdots\) c) \(2-\frac{x^{2}}{4}-\frac{x^{4}}{64}+\cdots\) b) \(2+\frac{x}{8}-\frac{x^{2}}{128}+\cdots\) d) \(2+\frac{x}{4}-\frac{x^{2}}{64}+\cdots\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.