Chapter 16: Problem 30
Find the value of the determinant \(\left[\begin{array}{rrr}3 & 2 & 1 \\ 0 & -1 & -1 \\ 2 & 0 & 2\end{array} \mid\right.\) a) 8 b) 4 d) \(-4\) c) \(-8\)
Chapter 16: Problem 30
Find the value of the determinant \(\left[\begin{array}{rrr}3 & 2 & 1 \\ 0 & -1 & -1 \\ 2 & 0 & 2\end{array} \mid\right.\) a) 8 b) 4 d) \(-4\) c) \(-8\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe expression \(\tan \theta \sec \theta\left(1-\sin ^{2} \theta\right) / \cos \theta \operatorname{simplifies~to~}\) a) \(\sin \theta\) b) \(\cos \theta\) c) \(\tan \theta\) d) \(\sec \theta\)
Express \((3+2 i) e^{2 i t}+(3-2 i) e^{-2 i t}\) in terms of trigonometric functions. a) \(3 \cos 2 t-4 \sin 2 t\) c) \(6 \cos 2 t-4 \sin 2 t\) b) \(3 \cos 2 t-2 \sin 2 t\) d) \(3 \sin 2 t+2 \sin 2 t\)
A triangle has sides of length 2,3 , and 4 . What angle, in radians, is opposite the side of length 3 ? a) \(0.55\) b) \(0.61\) c) \(0.76\) d) \(0.81\)
For the data of Prob. \(16.55\), what is the arithmetic mean? a) \(68.5\) b) \(68.9\) c) \(69.3\) d) \(70.2\)
Solve for \(\left[x_{i}\right]\) $$ \begin{aligned} 3 x_{1}+2 x_{2} &=-2 \\ x_{1}-x_{2}+x_{3} &=0 \\ 4 x_{1}+2 x_{3} &=4 \end{aligned} $$ a) \(\left[\begin{array}{r}2 \\ 4 \\ -6\end{array}\right]\) \(\left[\begin{array}{l}2 \\ 4 \\ 8\end{array}\right]\) d) \(\left[\begin{array}{r}8 \\ 14\end{array}\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.