A test car is traveling along a level road at \(88 \mathrm{km} / \mathrm{hr}\).
In order to study the acceleration characteristics of a newly installed
engine, the car accelerates at its maximum possible rate. The test crew
records the following velocities at various locations along the level road:
$$\begin{array}{lll}
x=0 & V=88.5 \mathrm{km} / \mathrm{hr} \\
x=0.1 \mathrm{km} & V=93.1 \mathrm{km} / \mathrm{hr} \\
x=0.2 \mathrm{km} & V=98.3 \mathrm{km} / \mathrm{hr} \\
x=0.3 \mathrm{km} & V=104.0 \mathrm{km} / \mathrm{hr} \\
x=0.4 \mathrm{km} & V=110.3 \mathrm{km} / \mathrm{hr} \\
x=0.5 \mathrm{km} & V=117.2 \mathrm{km} / \mathrm{hr} \\
x=1.0 \mathrm{km} & V=164.5 \mathrm{km} / \mathrm{hr}
\end{array}$$
A preliminary study shows that these data follow an equation of the form
\(V=A\left(1+e^{B x}\right),\) where \(A\) and \(B\) are positive constants. Find
\(A\) and \(B\) and a Lagrangian expression \(V=V\left(V_{0}, t\right),\) where
\(V_{0}\) is the car velocity at time \(t=0\) when \(x=0\)