Chapter 6: Problem 10
Air is delivered through a constant-diameter duct by a fan. The air is inviscid, so the fluid velocity profile is "flat" across each cross section. During the fan start-up, the following velocities were measured at the time \(t\) and axial positions \(x\) : $$\begin{array}{llll} & x=0 & x=10 \mathrm{m} & x=20 \mathrm{m} \\ t=0 \mathrm{s} & V=0 \mathrm{m} / \mathrm{s} & V=0 \mathrm{m} / \mathrm{s} & V=0 \mathrm{m} / \mathrm{s} \\\t=1.0 \mathrm{s} & V=1.00 \mathrm{m} / \mathrm{s} & V=1.20 \mathrm{m} / \mathrm{s} & V=1.40 \mathrm{m} / \mathrm{s} \\\t=2.0 \mathrm{s} & V=1.70 \mathrm{m} / \mathrm{s} & V=1.80 \mathrm{m} / \mathrm{s} & V=1.90 \mathrm{m} / \mathrm{s} \\\t=3.0 \mathrm{s} & V=2.10 \mathrm{m} / \mathrm{s} & V=2.15 \mathrm{m} / \mathrm{s} & V=2.20 \mathrm{m} / \mathrm{s}\end{array}$$ Estimate the local acceleration, the convective acceleration, and the total acceleration at \(t=1.0 \mathrm{s}\) and \(x=10 \mathrm{m} .\) What is the local acceleration after the fan has reached a steady air flow rate?