6. Calculate the effectiveness and find the tube length using ε-NTU method
The effectiveness (\(\varepsilon\)) can be calculated using the formula: \(\varepsilon = \frac{Q_{actual}}{Q_{max}}\), where \(Q_{actual}\) and \(Q_{max}\) are the actual and maximum possible heat transfers, respectively.
Since the outlet coolant temperature is given, we can calculate the actual heat transfer:
\(Q_{actual} = m c_p (T_{c2} - T_{c1}) = 1.8\,\text{kg/s} \cdot 4180\,\text{J/kg}\cdot\text{K} \cdot (80^\circ\text{C} - 17^\circ\text{C})= 473076\,\text{W}\)
The maximum possible heat transfer occurs when the coolant reaches the temperature of steam:
\(Q_{max} = m c_p (T_h - T_{c1}) = 1.8\,\text{kg/s} \cdot 4180\,\text{J/kg}\cdot\text{K} \cdot (120^\circ\text{C} - 17^\circ\text{C})= 627096\,\text{W}\)
\(\varepsilon = \frac{473076\,\text{W}}{627096\,\text{W}} \approx 0.754\)
We can use the effectiveness-NTU relation to check the NTU value:
\(\varepsilon = 1 - \exp\left(-\frac{1}{c} \cdot \left(1 - \exp(-c\,\mathrm{NTU})\right)\right)\), where \(c = \frac{mc_p}{U\cdot A}\)
Using the given values, \(c = \frac{1.8\,\text{kg/s}\cdot 4180\,\text{J/kg}\cdot\text{K}}{700\,\text{W/m}^2\cdot\text{K} \cdot 1.067\,\text{m}^2} \approx 17.77\)
Solving for NTU, we obtain \(\mathrm{NTU} \approx 0.056\), which agrees with the value we calculated earlier.
Now, we can calculate the heat transfer area using the NTU and ε values:
\(A = \frac{m c_p}{U \cdot \mathrm{NTU}} = \frac{1.8\,\text{kg/s} \cdot 4180\,\text{J/kg}\cdot\text{K}}{700\,\text{W/m}^2\cdot\text{K} \cdot 0.056} \approx 1.067\,\text{m}^2\)
Finally, the tube length can be found using the same formula as in the LMTD method:
\(L = \frac{A}{\pi d} = \frac{1.067\,\text{m}^2}{\pi \cdot 0.025\,\text{m}} \approx 13.56\,\text{m}\)
So, the length of the tube required using the ε-NTU method is approximately \(13.56\,\text{m}\).