Chapter 5: Problem 61
Consider steady two-dimensional heat conduction in a square cross section \((3 \mathrm{~cm} \times 3 \mathrm{~cm}, k=20 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \alpha=\) \(6.694 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\) ) with constant prescribed temperature of \(100^{\circ} \mathrm{C}\) and \(300^{\circ} \mathrm{C}\) at the top and bottom surfaces, respectively. The left surface is exposed to a constant heat flux of \(1000 \mathrm{~W} / \mathrm{m}^{2}\) while the right surface is in contact with a convective environment \(\left(h=45 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\right)\) at \(20^{\circ} \mathrm{C}\). Using a uniform mesh size of \(\Delta x=\Delta y\), determine \((a)\) finite difference equations and \((b)\) the nodal temperatures using Gauss-Seidel iteration method.