A vertical \(0.9\)-m-high and \(1.8\)-m-wide double-pane window consists of two
sheets of glass separated by a \(2.2-\mathrm{cm}\) air gap at atmospheric
pressure. If the glass surface temperatures across the air gap are measured to
be \(20^{\circ} \mathrm{C}\) and \(30^{\circ} \mathrm{C}\), the rate of heat
transfer through the window is
(a) \(19.8 \mathrm{~W}\)
(b) \(26.1 \mathrm{~W}\)
(c) \(30.5 \mathrm{~W}\)
(d) \(34.7 \mathrm{~W}\)
(e) \(55.0 \mathrm{~W}\)
(For air, use \(k=0.02551 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K},
\operatorname{Pr}=0.7296, v=\) \(1.562 \times 10^{-5} \mathrm{~m}^{2} /
\mathrm{s}\). Also, the applicable correlation is \(\mathrm{Nu}\) \(\left.=0.42
\mathrm{Ra}^{1 / 4} \mathrm{Pr}^{0.012}(H / L)^{-0.3}\right)\)
(For air, use \(k=0.02588 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K},
\operatorname{Pr}=0.7282, v=1.608 \times\) \(10^{-5} \mathrm{~m}^{2} /
\mathrm{s}\) )