Chapter 1: Problem 14
\({ }^{\dagger} \mathrm{A}\) small bead is threaded on a smooth wire in the shape of a curve given parametrically by \(\boldsymbol{r}=\boldsymbol{r}(q)\). The wire rotates with constant angular velocity about a vertical axis. Show that $$ \frac{\mathrm{d}}{\mathrm{d} t}\left[\frac{1}{2} \dot{q}^{2} \frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} q} \cdot \frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} q}\right]=\dot{q} \frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} q} \cdot \ddot{\boldsymbol{r}} $$ where the dot is the time derivative relative to a frame rotating with the wire, and \(\boldsymbol{r}\) is measured from an origin on the axis Deduce that $$ \frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} q} \cdot \frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} q} \dot{q}^{2}-(\boldsymbol{\omega} \wedge \boldsymbol{r}) \cdot(\boldsymbol{\omega} \wedge \boldsymbol{r})-2 \boldsymbol{g} \cdot \boldsymbol{r}=\text { constant. } $$ Does this result still hold when the axis of rotation is not vertical?