A particle of mass m collides elastically with an identical particle at rest. Classically, the outgoing trajectories always make an angle of 90°. Calculate this angle relativistically, in terms ofϕ , the scattering angle, and v, the speed, in the center-of-momentum frame.

Short Answer

Expert verified

The angle subtended by two particles istanθ=2c2γv2sinϕ .

Step by step solution

01

Expression for the outgoing 4-momenta and Lorentz transformation equation:

Write the expression for outgoing 4-momenta.

rμ=Ec,pcosϕ,psinϕ,0sμ=Ec,pcosϕ,psinϕ,0

Write the expression for the Lorentz transformation equation.

r¯x=γ(rx-βr0)r¯y=rys¯x=γ(sx-βs0)s¯y=sy

02

Determine the angle subtended by two particles:

It is known that:

rx=pcosϕβ=pcEr0=Ec

Hence, the value of r¯xwill be,

r¯x=γpcosϕ+pcEEcr¯x=γp(1+cosϕ)

The value of r¯y,s¯xands¯ywill be,

r¯y=psinϕs¯x=γp(1cosϕ)s¯y=psinϕ

Write the equation for cosθ.

cosθ=r¯s¯r¯s¯ …… (1)

Here,r¯=r¯xx^+r¯yy^ and s¯=s¯xx^+s¯yy^.

Substitute r¯=r¯xx^+r¯yy^, s¯=s¯xx^+s¯yy^, r¯x=γp(1+cosϕ), r¯y=psinϕ, s¯x=γp(1cosϕ)and s¯y=psinϕ.

cosθ=(r¯xx^+r¯yy^)(s¯xx^+s¯yy^)r¯s¯cosθ=((γp(1+cosϕ))x^+(psinϕ)y^)((γp(1cosϕ))x^+(psinϕ)y^)[γ2p2(1+cosϕ)2+p2sin2ϕ][γ2p2(1cosϕ)2+p2sin2ϕ]cosθ=γ2p2(1cos2ϕ)p2sin2ϕ[γ2p2(1+cosϕ)2+p2sin2ϕ][γ2p2(1cosϕ)2+p2sin2ϕ]cosθ=(γ21)sin2ϕ[γ2(1+cosϕ)2+sin2ϕ][γ2(1cosϕ)2+sin2ϕ]

Substitute cosθ=(γ21)sin2ϕ[γ2(1+cosϕ)2+sin2ϕ][γ2(1cosϕ)2+sin2ϕ]in equation (1).

(γ21)γ21+cosϕsinϕ2+1γ21cosϕsinϕ2+1=r¯s¯r¯s¯r¯s¯r¯s¯=(γ21)γ2cot2ϕ2+1γ2tan2ϕ2+1

Let ω=γ21

cosθ=ω1+cot2ϕ2+ωcot2ϕ21+tan2ϕ2+ωtan2ϕ2cosθ=ωcosec2ϕ2+ωcot2ϕ2sec2ϕ2+ωtan2ϕ2cosθ=ωsinϕ2cosϕ21+ωcos2ϕ21+ωsin2ϕ2cosθ=12ωsinϕ1+12ω(1+cosϕ)1+12ω(1cosϕ)

On further solving,

cosθ=sinϕ2ω+1+cosϕ2ω+1cosϕcosθ=sinϕ2ω+12cos2ϕcosθ=sinϕ4ω2+4ω+sin2ϕ

Here,τ2=4ω2+4ω

cosθ=11+τsinϕ2

Now, consider the following figure,

Apply the Pythagoras theorem,

role="math" localid="1655907747852" (PR)2=(PQ)2+(QR)21+τsinϕ22=(PQ)2+(1)2(PQ)2=1+τsinϕ21PQ=τsinϕ

Now, calculate the value of tanθ.

tanθ=τsinϕtanθ=4ω2+4ωsinϕtanθ=4(γ21)2+4(γ21)sinϕtanθ=2γ(γ21)sinϕ .....(2)

Here,γ=11v2c2

Hence, equation (2) becomes,

tanθ=2γ11v2c221sinϕtanθ=2c2γv2sinϕ

Therefore, the angle subtended by two particles istanθ=2c2γv2sinϕ .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free