Chapter 2: Q50P (page 108) URL copied to clipboard! Now share some education! The electric potential of some configuration is given by the expression V(r)=Ae-λrrWhere Aand λare constants. Find the electric fieldE(r), the charge densityρ(r),and the total charge(Q). Short Answer Expert verified The electric field isE=Ae-λr1+rλr⏜r2 .The charge density isAε0=4πδ3r-λ2re-λr .The total charge Qis 0. Step by step solution 01 Define functions Consider the given expression.V(r)=Ae-λrr …… (1)Here, Aand λare constant. 02 Determine electric filed Write the representation of electric filed is gradient of a scalar potential.E=-∇V ……(2)Hence, the electric filed is calculated as follows:E=-∇V=-∂∂rAe-λrr=-A-re-λr-λ-e-λr1r2r⏜=-A-re-λr-e-λrr2r⏜Solve further.E=Arλe-λr+e-λrr⏜r2 …… (3)=Ae-λr1+rλr⏜r2Thus, the electric field isE=Ae-λr1+rλr⏜r2 . 03 Determine charge density The Gauss’s law in different way[S1]∇.E=1ε0ρρ=ε0∇.E …… (4)Substitute E=Ae-λr1+rλr⏜r2in equation (4).ρ=ε0∇.Ae-λr1+rλrr2=ε0Ae-λr1+λ∇.r⏜r2+r⏜r2.∇Ae-λr1+rλBut ∇.r⏜r2=4πδ3r,Therefore,ρ=ε0Ae-λr1+rλ4πδ3r+r⏜r2∇.Ae-λr1+rλ=ε0A4πδ3r+r⏜r2∇.Ae-λr1+rλSincee-λr1+rλ4πδ3r=4πδ3r,∇Ae-λr1+rλ=r⏜∂∂rAe-λr1+rλ=r⏜A∂∂re-λr1+rλ=r⏜A1+rλ∂∂re-λr+e-λr1+rλ=r⏜A1+rλ-λe-λr+e-λrλSolve further.role="math" localid="1657511760985" ∇Ae-λr1+rλ=r⏜Aλe-λr-λ1+λre-λr=r⏜Aλe-λr-λe-λr1+λr=r⏜Aλe-λr1-1+λr=r⏜Aλe-λr-1-1-λrSolve further.∇Ae-λr1+rλ=r⏜Aλe-λr-λr=r⏜A-λ2e-λrMultiply byr⏜r2on both sides.r⏜r2.∇Ae-λr1+rλ=r⏜r2.∇Ae-λr1+rλ=r⏜r2.Aλe-λr+1+rλe-λr-λ=r⏜r2.Aλe-λr-λe-λr-rλ2e-λrr⏜=1r2A-λ2re-λrThus,r⏜r2.∇Ae-λr1+rλ=-Aλ2re-λrHence,ρ=ε0A4πδ3r+r⏜r2∇.Ae-λr1+rλ=ε0A4πδ3r-Aλ2re-λr=Aε04πδ3r-λ2re-λrThus, the charge density is Aε04πδ3r-λ2re-λr. 04 Determine the total charge Write the expression for the total charge.Q=∫ρdτ=∫Aε04πδ3r-λ2re-λrdτ=∫Aε04πδ3rdτ-∫Aε0λ2re-λrdτ=4πε0A∫δ3rdτ-Aε0λ2∫e-λrrdτSimplify further,Q=4πε0A1-Aε0λ2∫e-λrr4πr2dr=4πε0A-4πAε0λ2∫re-λrdr=4πε0A-4πAε0λ2∫0∞re-λrdr=4πε0A-4πAε0λ2-re-λrλ-e-λrλ20∞Also,Q=4πε0A-4πAε0λ21λ2=4πε0A-4πAε0=0Thus, the total charge Q is 0. Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!