Prove product rules (i), (iv), and (v)

Short Answer

Expert verified

The product rules (i), (iv), and (v) are proved

Step by step solution

01

Find the curl of vector v

To prove any rule, simplify its left and right side, and comare them with each other.

Let the vector v be defined as vxi+vyj+vzkand thelocalid="1657359311673" operator is defined as =xi+yj+zk. The gradient of vector v is obtaind as

localid="1657346308106" .v=xi+yj+zk.vxi+vyj+vzk=vxxi+vyyj+vzzThecurlofvectorvisobtaindas.v=xi+yj+zk.vxi+vyj+vzk=vxy-vxzki+vyz-vyxkj+vzx-vzyk

02

 Prove∇(fg)=∇g+g∇f 

In the expressionfg=fg+gf, where f,g are two dimensional vectors..

Find the gradient of vector g.

g=xi+xjg=xi+x

Find the gradient of vector f.

f=xi+xjf=fxi+fyjNowapplyingtheperatorontheproductoffandg.fg=fgxi+fgyj=fgxi+gyj+fxi+fyj=fg+gfThus,itisprovedthatfg=fg+gf

03

Find∇×(A×B) .

Intheexpression×A×B=B×A-A×B,whereA,BaredefinedasA=AXI+Ayj+AzkandB=BXI+Byj+Bzk.FindthecrossproductofthevectorsAandB.A×B=ijkAxAyAzBxByBz=iAyBz-AzBy-jAxBz-AzBx+kAxBy-AyBx=iAyBz-AzBy-jAzBx-AzBx+kAxBy-AyBxObtainthedivergenceofvectorA×B.A×B=xAyBz-AzBy+yAzBx-AxBz+xAxBy-AyBx.....1

04

Find B(∇×A)-A(∇×B)  

Find curl of vector A.

×A=Azy-Ayzi-Azx-Axzj+Ayx-Axyk=Azy-Ayzi+Axz-Azxj+Ayx-AxykNowevaluateB×AB×A=BXi+Byj+BzkAzy-Ayzi-Axz-Azxj+Ayx-Axyk=BxAzy-Ayzi+Axz-Azxj+Ayx-Axy

FindcurlofvectorB.×B=Bzy-Byzi-Bxz-Bzxj+Byx-Bxyk=Bzy-Byzi+Bxz-Bzxj+Byx-BxykNowevaluateA×BA×BAXi+Ayi+Azi=Bzy-Byzi-Bxz-Bzxj+Byx-Bxy

AxBzy-Byz+AyBxz-Bzx+AzByx-BxyFindB×A-A×BBB×A-A×B=BxBzy-Byz+ByBxz-Bzx+BzByx-Bxy-AxBzy-Byz+AyBxz-Bzx+AzByx-Bxy=xAyBz-AyBz+yAzBx-AxBz+zAxBy-AyBx

….(2)

From equations (1) and (2) , it can be concluded that

×A×B=B×A-A×B

05

Find   

Find the curl of fA,

×fA=ijkxyzfAxfAyfAz=yfAz-zfAyi-xfAz-zfAx+kxfAy-yfAx=fyAz+Azzf-fyAy-Ayzfi-fxAz+Azxf-fzAz+Azzfj+fyAy+Ayzf-fyAx-Axzf

=fAzy-Azyi+Axz-Azxj+Ayx-Axyk-Ayfz-Azfyi+Azfx-AzfziAxfy-AyfxkThususingabovecalculationswecanwrite×fA=f×A-A×f,wherefisaconstantvector.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free