(a) If A and B are two vector functions, what does the expression A·Bmean?(That is, what are its x, y, and z components, in terms of the Cartesian componentsof A, B, and V?)

(b) Compute r^·r^, where r is the unit vector defined in Eq. 1.21.

(c) For the functions in Prob. 1.15, evaluate va·vb.

Short Answer

Expert verified

(a) Therfore, the reuired expression is

A·B=AxBxx+AyBxy+AzBxzx^+AxByx+AyByy+AzByzy^+AxBzx+AyBzy+AzBzzz^.

(b).Therefore, the values of values ofr^·r^=0.

(c) Therefore, the required expression isVa·Vb=x2y+3x2z2x^+6xz2-4xyzy^-3x2zz^.

Step by step solution

01

Explain the concept and write the expression of position vector

The seperation vector is obtained by subtracting the source vector r^2from the destinationr^1 . The expression of position vector is as follows:

r^=xi+yj+zk

Where i, j, k are unit vectors along x, y, z coordintaes

02

Determine the expression A·∇B . (a)

Consider the expression is A·B.

Write the expression as:

A·B=Axx^+Ayy^+Azz^·xx^+yy^+zz^=Axx+Ayy+AzzB

Solve further as:

A·B=Axx+Ayy+AzzB=Axx+Ayy+AzzBxx^+Byy^+Bzz^=AxBxx+AyBxy+AzBxzx^+AxByx+AyByy+AzByzy^+AxBzx+AyBzy+AzBzzz^

Therefore, the required expression is A·B=AxBxx+AyBxy+AzBxzx^+AxByx+AyByy+AzByzy^+AxBzx+AyBzy+AzBzzz^.

03

Determine the expression r^·∇r^ . (b)

Consider the expression forr^·r^is obtained as:

Solve for the x component as:

r^=rr^=xx^+yy^+zz^x2+y2+z2

Solve for the x component of r^·as:

xx2+y2+z2dxxx2+y2+z2+xx2+y2+z2dyxx2+y2+z2+xx2+y2+z2dzxx2+y2+z2=xy2+xz2-xy2-xz2x2+y2+z232

Simliar values will be obtained fro y and z component.

Therefore, the values ofr^·r^=0.

04

Determine the expression va·∇vb . (c)

Consider the expressions for the vector as:

Va=x2x^+3xz2y^-2xzz^Vb=xyx^+2yzy^-3xzz^

Solve forva·vbas:

Va·Vb=x2y+3x2z2-2xz0x^+x20+3z22xz-2xz2yy^+x23z+3xz20-2xz3xz^=x2y+3x2z2x^+6xz2-4xyzy^-3x2zz^

Therefore, the required expression is Va·Vb=x2y+3x2z2x^+6xz2-4xyzy^-3x2zz^.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free