Test the energy-time uncertainty principle for the free particle wave packet in Problem 2.43and the observable x , by calculating σHσx , and d<x>/dtexactly.

Short Answer

Expert verified

The result obtained are

σx2=14a1+2ħatm2σH2=ħ4a2m2a+2l2dxdtħlm

Step by step solution

01

The wave function and find |ψ|2

From problem2.43, the wave function is given by:

ψ(x,t)=(2aπ)1/4-ax2+i(lx-ħl2t/2m1+2iħat/m1+2iħat/m …… (1)

Now find ψ2,

ψ2=2aπ11+4ħ2a2t2m2e-l2/2aexpaix+I/2a21+2iħat/m+ix+I/2a21+2iħat/mLetθ=2ħat/m,soresultis:ψ2=2aπ11+θ2e-I/2aexpaix+I/2a21+2iħat/m+ix+I/2a21-Expandtheterminsquarebracketsas:ψ2=2aπ11+θ2e-I/2aexp-2a1+θ2x-θl2a2+l22aψ2=2aπ11+θ2exp-2a1+θ2x-θl2a2

02

Find the expectation value of x .

Considering the following function:

w=a1+2ħat/m21/2=a1+θ21/2Thewavefunctionwillbe:ψx,t2=2πwe-2w2x-θ/2a2Findtheexpectationvalueofx,as:x=-xψx,t2dxSubstitutingthevalueofwavefunction:x=-2πwxe-2w2x-θ/2a2dxLety=x-θI/2a=x-vt,andthusx=y+vtwherev=ħI/m,substitutetheseandget:x=-y+vt2πwe-2w2x-θ/2a2dyIntwointergralsobtainedthefirstoneiszero,sincethefuntionidodd,andtheintegrationofanoddfunctionfrom-toiszero,andthesecondintegralis1bynormalization,so:x=vt=ħlmt......(2)Ondifferentiatingaboveequation:dxdtħlm

03

Find the expectation value of x2.

Find the expectation value of x2as:

x2=-y+vt22πwe-2w2y2dy

Since y+vt2=y2+2yvt+v2t2, to find the values of the first integral, use the integral calculator, where the second integral is zero since it is an odd function, and the third integral is 1 by the normalization, so the value of the integral will be:

x2=14w2+0+vt2Substitutebackwithandget:x2=14w2+ħltm2Substitutebackwithw,andget:x2=1+2aħlt/m2+a2aħlt/m24a.......(3)Theσx2canbecalculatedas:σx2=x2-x2=14w2+ħltm-ħltm=14w2σx2=14a1+2ħatm2Write(1)intermsofθas:ψx,t=2aπ1/411+e-I24aeaix+I2a/1+Thus:Φp,t=12πħ2aπ1/411+e-I24a-eaix+I2a/1+dxlety=x-il2a,so:Φp,t=12πħ2aπ1/411+e-I2/4aepI/2-e-ipy/ħe-ey2I1+dy

04

Find the expectation value of p4.

By the use of the integral from part (a) of problem 2.22:

Φp,t=12πħ2aπ1/411+iθe-I2/4aepI/2aħπ1+ae-p21+iθ4aħ2=1ħ121/4e-t24ae-pI2e-p21+iθ4aħ2Thus:

Φp,t2=12aπ1ħe-I2/2aepI/aħe-p2/2aħ2=1ħ2aπe12aI2-2pIħ+p2ħ2=1ħ2aπe-I-pIħ2/2a.......(3)Theexpectationvalueofp4is:p4=1ħ2-p4e-I-pIħ2/2adpLetpħ-I=zsop=ħz+I,so:p4=1ħ2ħ5-z+I4e-z2/2adzOnlyevenpowersofzsurvive,wheretheoddpowersofzvanishes,sinceitsanoddfunctionandtheintegrationofanoddfunctionfromtoiszero.So:

p4=ħ42aπ-z4+6z2I2+I4e-z2/2adz=ħ42aπ32a242aπ+6I22a22aπ+I42aπ=ħ43a2+6aI2+I4Weknowthefollowingrelation:H2=p44m2Theexpectationvaluewillbe:H2=ħ44m23a2+6aI2I4......(5)

05

Find the expectation value of (p2)

Now find the expectation value of p2

p2=-ħ2-Ψ*d2Ψdx2dxFrom(l),writethis:dx=2iax+I2a1+Ψ;thus:d2Ψdx2=2iaix+I/2a1+dx+2i2a1+Ψ=-4a2ix+I/2a1+-2a1+Ψ

So the expectation value is:

p2=4a2ħ21+iθ2-ix+I2a2+1+iθ2aΨ2dx=4a2ħ21+iθ2--y+vtiI2a2+1+iθ2aΨ2dyn=4a2ħ21+iθ2--y2Ψ2dy-2vt-iI2a-yΨ2dyn+-vt-iI2a2+1+iθ2a-Ψ2dy=4a2ħ21+iθ2-14w2+0vt-iI2a2+1+iθ2aFurthersolvingaboveequation,=4a2ħ21+2-1+θ24a--il2a1+2+1+2a=1+--1-+l2a-1++2=21+1+1+l2a=ħ2a+l2

06

Find the value of σH2 and test the energy-time uncertainty principle.

The expectation value is H:

H=p22m

The above equation will be:

H=ħ2a+l22m (6)

Now the value of σH2could be found as:

σH2=H2-H2=ħ44m23a2+6al2+l4-a2-2al2-l4=ħ44m22a2+4al2=ħ4a2m2a+2l2σH2=ħ4a2m2a+2l2Finallytesttheenergy-timeuncertaintyprincipleas:σH2σx2=ħ4a2m2a+2l214a1+2ħatm2=ħ4a2m21+aal21+2ħatm2ħ4l24m2=ħ44ħlm2=ħ24dxdt2

So, the uncertainty principle holds.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Findthemomentum-spacewavefunctionϕn(p,t)forthenthstationarystateoftheinfinitesquarewell.Graph|ϕ1(p,t)|2and|ϕ2(p,t)|2,asfunctionsofp(payparticularattentiontothepointsp=±nπh/a).Useϕn(p,t)tocalculatetheexpectationvalueofp2.CompareyouranswertoProblem2.4.

A harmonic oscillator is in a state such that a measurement of the energy would yield either(1/2)hωor (3/2) hω, with equal probability. What is the largest possible value of in such a state? If it assumes this maximal value at time t=0 , what is ψ(x,t) ?

Coherent states of the harmonic oscillator. Among the stationary states of the harmonic oscillator (Equation 2.67) only n = 0 hits the uncertainty limit (σxσp=h/2); in general, σxσp=(2n+1)h/2, as you found in Problem 2.12. But certain linear combinations (known as coherent states) also minimize the uncertainty product. They are (as it turns out) Eigen functions of the lowering operator

ψn=1n!(a^+)nψ0(2.68).

a_|α>=α|a>(the Eigen value α can be any complex number).

(a)Calculate <x>,<x2>,<p>,<p2>in the state |α〉. Hint: Use the technique in Example 2.5, and remember that is the Hermitian conjugate of a-. Do not assume α is real.

(b) Find σx; show that σxσp=h/2.

(c) Like any other wave function, a coherent state can be expanded in terms of energy Eigen states: |α>=n=0Cn|n>.

Show that the expansion coefficients arecn=αnn!c0.

(d) Determine by normalizing |α〉. Answer: exp(-α2/2)

(e) Now put in the time dependence: |n>e-iEntIh|n>,

and show that |αt|remains an Eigen state of a-, but the Eigen value evolves in time:α(t)=e-iωt So a coherent state stays coherent, and continues to minimize the uncertainty product.

(f) Is the ground state (n=0>)itself a coherent state? If so, what is the Eigen value?

The Hamiltonian for a certain three-level system is represented by the matrix

H=(a0b0c0b0a), where a, b, and c are real numbers.

(a) If the system starts out in the state |&(0)=(010)what is |&(t) ?

(b) If the system starts out in the state|&(0)=(001) what is|&(t) ?

(a) Show that the set of all square-integrable functions is a vector space (refer to Section A.1 for the definition). Hint: The main problem is to show that the sum of two square-integrable functions is itself square-integrable. Use Equation 3.7. Is the set of all normalized functions a vector space?

(b) Show that the integral in Equation 3.6satisfies the conditions for an inner product (Section A.2).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free