The Hamiltonian for a certain three-level system is represented by the matrix

H=hω[100020002] Two other observables, A and B, are represented by the matrices A=λ[010100002],B=μ[200001010],where ω, , and μ are positive real numbers.

(a)Find the Eigen values and (normalized) eigenvectors of H, A and B.

(b) Suppose the system starts out in the generic staterole="math" localid="1656040462996" |S(0)>=(c1c2c3)

with |c1|2+|c2|2+|c3|2=1. Find the expectation values (at t=0) of H, A, and B.

(c) What is |S(t)>? If you measured the energy of this state (at time t), what values might you get, and what is the probability of each? Answer the same questions for A and for B.

Short Answer

Expert verified

(a) Eigen values and Eigen vectors of H, A and B

|h1>=(100),|h2>=(010),|h3>=(001).|a1>=(001),|a2>=12(110),|a3>=12(1-10).|b1>=(100),|b2>=12(011),|b3>=12(01-1).

(b) Expectation values of H, A and B

<H>=hω(c12+2c22+2c32).<A>=λ(c1*c2+c2*c1+2c32).<B>=μ(c12+c2*c3+c3*c2).

(c)|S(t)>=c1e-iωt|h1>+c2e-2iωt|h1>+c3e-2iωt|h3>

Step by step solution

01

(a) Finding the Eigen values and Eigen vectors of H, A and B

H:

E1=hω,E2=E3=2hω;|h1>=100,|h2>=010,|h3>=001.

A:

localid="1656041551772" -aλ0λ-a0002λ-a=a22λ-a-2λ-aλ2=0a1=2λ,a2=λ,a3=-λλ010100002αβγ=aαβγλβ=aαλα=aβ2λγ=aγ.

(1)

λβλα2λγ=2λαβ=2α2λβ2λγα=β=0;|a1>=001.

(2)

localid="1656042243144" λβ=λαβ=αλα=λβα=β2λγ=λγ;γ=0;|a2>=12110.

(3)

λβ=-λαβ=-αλα=-λβα=-β2λγ=-λγ;γ=0;|a3>=121-10.

B:

2μ-b000-bμ0μ-b=b22μ-b-2μ-bμ2=0b1=2μ,b2=μ,b2=-μ.μ200001010αβγ=bαβγ2μα=bαμγ=bβμβ=bγ.

(1)

role="math" localid="1656043183873" 2μα=2μαμγ=2μβγ=2βμβ=2μγβ=2γβ=γ=0;|b1>=100.

(2)

2μα=μαα=0μγ=μβγ=βμβ=μγ;β=γ;|b1>=12011.

(3)

2μα=-μαα=0μγ=-μβγ=-βμβ=-μγ;β=-γ;|b1>=1201-1.

02

 Step2: (b) Finding the expectation values of H, A and B

H=S0HS0=hωc1*c2*c3*100020002c1c2c3=hωc12+c22+c32.A=S0AS0=λc1*c2*c3*010100002c1c2c3=λc1*c2+c2*c1+2c32.B=S0BS0=μc1*c2*c3*200001010c1c2c3=μ2c12+c2*c3+c3*c2.

03

(c) Finding  and the probabilities of H, A and B

|S0>=c1|h1>+c2|h2>+c3|h3>|St>=c1e-iE1tIh|h1>c2e-iE2tIh+|h2>c3e-iE3tIh+|h3>=c1e-iωt|h1>c2e-2iωt+|h2>c3e-2iωt+|h3>.

=e-2iωtc1eiωt100+c2010+c3001=e-2iωtc1eiωtc2c3.

H::h1=hω,probability c12;h2=h3=2hω, probability c22+c32.

A:a1=2,a1|St=e-2iωt001c1eiωtc2c3=e-2iωtc3probabilityc32a2=λ/2,a1|St=e-2iωt12110c1eiωtc2c3=12e-2iωtc1eiωt+c2

localid="1656045665650" probability=12c1*e-iωt+c2c1e-iωt+c2=12c12+c22+c1*c2e-iωt+c2*c1eiωt.a3=-λ/3,a3|St=e-2iωt121-10c1eiωtc2c3=12c1eiωt-c2probability=12c1*e-iωt-c2*c1e-iωt-c2=12c12+c22-c1*c2e-iωt+c2*c1eiωt.

Note that the sum of the probabilities is 1.

B:

b1=μ/2,b1|St=e-2iωt12100c1eiωtc2c3=eiωt-c1probabilityc12b2=μ/2,b2|St=e-2iωt12011c1eiωtc2c3=12eiωtc2+c3probability=12c2*-c3*c2+c3=12c22+c32+c2*c3+c3*c2.b3=-μ/3,b3|St=e-2iωt1201-1c1eiωtc2c3=12e-2iωtc2-c3probability=12c2*-c3*c2-c3=12c22+c32-c2*c3-c3*c2.

Again, the sum of the probabilities is 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Check that the eigenvalues of the hermitian operator in Example 3.1 are real. Show that the eigenfunctions (for distinct eigenvalues) are orthogonal.

(b) Do the same for the operator in Problem 3.6.

The Hamiltonian for a certain three-level system is represented by the matrix

H=(a0b0c0b0a), where a, b, and c are real numbers.

(a) If the system starts out in the state |&(0)=(010)what is |&(t) ?

(b) If the system starts out in the state|&(0)=(001) what is|&(t) ?

Find the matrix elements <n|x|n'>a­­­­nd <n|p|n'>in the (orthonormal) basis of stationary states for the harmonic oscillator (Equation 2.67). You already calculated the "diagonal" elements (n=n') in Problem 2.12; use the same technique for the general case. Construct the corresponding (infinite) matrices, X and P . Show that(1/2m)P2+(2/2)X2=His diagonal, in this basis. Are its diagonal elements what you would expect? Partial answer:

<n|x|n'>=h2mω(n'δn,n'-1+nδn,n'-1)

The Hamiltonian for a certain two-level system is

H^=o˙(1><1-2><2+1><2+2><1)

where1>,2>is an orthonormal basis and localid="1658120083298" o˙ is a number with the dimensions of energy. Find its eigenvalues and eigenvectors (as linear combinations oflocalid="1658120145851" 1> and2> . What is the matrix H representingH^ with respect to this basis?

Suppose Ψ(x,0)=Ax2+a2.(-<x<)for constantsA and a.

(a) Determine A, by normalizingΨ(x,0)

(b) Find, and(at time).

(c) Find the momentum space wave functionΦ(p,0), and check that it is normalized.

(d) UseΦ(p,0)to calculatep,p2, andσp(at timet=0).

(e) Check the Heisenberg uncertainty principle for this state.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free